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Abstract

We propose two new conformity scores for conformal prediction, in a general multivariate regression frame-
work. The underlying score functions are based on a covariance analysis of the residuals and the input points.
We give theoretical guarantees on the prediction sets, which consist in explicit ellipsoids. We study the asymp-
totic properties of the ellipsoids, and show that their volume is reduced compared to that of classic balls, under
ellipticity assumptions. Finally, we illustrate the effectiveness of all our results on an in-depth numerical study,
including heavy-tailed as well as non-elliptical distributions.
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1 Introduction

Uncertainty quantification aims to provide mathematical techniques to quantify uncertainties in computational
and real worlds. One very common problem in uncertainty quantification is to provide a confidence set for a given
prediction method. When the prediction method is based on a statistical model that is not too complex, classical
statistical tools can lead to a confidence set. In black box models, as those developed in machine learning or in
complicated regression models the inference process to build such confidence sets is not so straightforward. One now
classical way to build such confidence sets stands on a non-parametric learning of the fluctuations of the predictors.
This technique called conformal inference allows the construction of a confidence set for a given trained predictor
by only observing its behaviour on a calibration sample.

Conformal inference has a long story beginning early in the forty’s by the pioneer works in reliability of Wilks
([51, 52]). Conformal prediction has then been subsequently developed in the early 2000s by a research group
around Vapnik and Vovk (see e.g. [49]). With the spectacular progress and the massive implementation of black-
box models in neural machine learning, there has been an impressive revival of conformal prediction for at least
five or seven years. In a nutshell, conformal prediction is a general concept that includes many different means of
providing confidence of pointwise predictions produced using a statistical model or machine learning, without any
knowledge on the predictor and under mild assumptions. Indeed, the construction of a prediction set having a high
probability of containing a quantity of interest is a general challenging problem in the uncertainty quantification
paradigm. More formally, let X and Y be some state spaces. Let further (X,Y ) ∈ X × Y be a random vector.

Given a sample (Xi, Yi)i=1,...,n and a predictor f̂ : X → Y (independent of the sample), for Xn+1 ∈ X (a new
draw of X), we aim to build a random measurable region Cn

α(Xn+1) ⊆ Y as tight as possible, such that for a
given α (close to 0 and set by the user), we have P (Yn+1 ∈ Cn

α(Xn+1)) ≥ 1 − α. In some ideal cases, the known

statistical properties or characteristics of the predictor f̂ can be sole used to construct Cn
α(·). However, this usually

requires model assumptions on the data, that are sometimes too restrictive or unrealistic. Even worse, it may
happen that none of the properties of f̂ are useful for building Cn

α(·). The aim of Conformal Inference (CI) is
to construct such regions, with a very appealing advantage: CI requires only mild assumptions on the sample
distribution and on the predictor. Actually, the only hypothesis needed is an exchangeability one, that will be
discussed later (see the beginning of Section 2). Roughly speaking, the intuition behind CI is that a relevant
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prediction for the unknown output Yn+1 should be any y ∈ Y such that (Xn+1, y, f̂(Xn+1)) seems to be conform

to the sample (Xi, Yi, f̂(Xi))i=1,...,n. The main ingredient here is to define and to work with an appropriate score
of conformity. Of course, the appropriateness of a given score greatly depends on the context. In particular, the
shape and accuracy of the prediction set is directly related both to the performance of the predictor f̂ and to the
conformity score.

Since its introduction in the early 2000s (see e.g. [50]), conformal prediction has been developed in many
different contexts as for example classification [3, 12], regression [7, 29, 43], functional data [13], outlier detection
[5, 30], neural networks [41], etc. For more insights and examples, we refer to the recent reviews [2, 17, 24, 28]. In
many works dealing with CI, the size and shape of Cn

α(Xn+1) only mildly depend on Xn+1. This can make sense

if for example the covariance of the residual Y − f̂(X) is homogeneous. Dealing with heterogeneous data can be
approached with different objectives in mind. The grail of conformal inference would be to obtain a conditional
coverage property for Cn

α(Xn+1), that is P (Yn+1 ∈ Cn
α(Xn+1)|Xn+1) ≥ 1−α. However, it is theoretically impossible

to ensure the conditional coverage with a finite sample [48]. A less demanding property could be then to be able to
capture some geometric features of the conditional distribution P(Y |X), typically heteroscedasticity in data. The
resulting prediction set should then adapt in terms of shape and size with respect to the input. For example, [28]
proposed to use some normalizing statistic in the score, based on the previous sample points. In this last work, the
trick consists in normalizing the residuals, for example with respect to their median. Notice furthermore that many
of the works in CI consider only the case where Y ⊆ R, leading thus to prediction intervals. The direct extension
to Y ⊆ Rℓ then consists in using a norm of the residual vector R := Y − f̂(X), leading to prediction balls centered

on f̂(X). However, our wish is that the geometry of the prediction set adapts with the input, which cannot be
achieved by considering balls. The multidimensional framework is still widely studied, with some ongoing works
considering responses taking values in separable metric spaces [32], exploring approaches based on transport tools
[45, 54], or formulation in terms of minimum-volume coverage for arbitrary norm-based sets [6].

In this work, we propose and fully investigate CI with a score built on the empirical covariance of (X,Y − f̂(X)),
where both X and Y are multidimensional. The covariance estimate and score include the prediction point Xn+1

and the potential residual y− f̂(Xn+1). We show that our procedure amounts to estimating the conditional linear

expectation of the residual Y − f̂(X) given the input X, formulated in a CI setting (see Remark in Section 3.3).
We will thus call our method the conformal conditional linear expectation (CCLE). The main advantage of the
associated region Cn

α is that it is well tailored to multivariate outputs Y ∈ Rℓ, while remaining easy to compute.
Moreover, it leads to adaptive prediction sets in terms of size and shape. It is important to recall that despite
the conditional aspect of the score proposed here, its main motivation is not to improve the conditional coverage.
Rather, our primary goals are (i) the adaptivity of the prediction set with reference to the distribution of (X,R)
and (ii) decreasing the volume of the prediction set. In Section 4, we discuss the necessary adjustments to recover
the conditional coverage in the asymptotic regime.

The following theorem summarises and gives in a nutshell our main results (Theorem 3.1, Theorem 3.6, Propo-
sition 4.7, Proposition 4.9 and Proposition 4.10).

Theorem 1.1. Let ((X1, Y1), . . . , (Xn+1, Yn+1)) be exchangeable pairs of random vectors and α ∈ (1/(n + 1), 1).
Then,

• There exists explicit An, ρn,α and Ỹn+1, only depending on ((X1, Y1), . . . , (Xn, Yn)), Xn+1 and α, such that
the ℓ-dimensional ellipsoid

En
α = {y ∈ Rℓ : (y − Ỹn+1)

⊤A−1
n (y − Ỹn+1) ≤ ρn,α} (1)

satisfies P(Yn+1 ∈ En
α) ≥ 1− α.

• Set R1 = Y1 − f̂(X1) and assume that (X1, R1) follows an elliptical distribution. Then, as n → +∞ and
under mild assumptions on the distribution of (X1, R1), the volume Vol(En

α) converges in distribution towards
a random variable Vol(E∞

α ) satisfying

Vol(E∞
α ) ≤ Vol(B∞

α ) a.s.. (2)

Here, Vol(B∞
α ) is the (deterministic) limit of the volume of the ball obtained using the standard score ∥Y −

f̂(X)∥ (see Proposition 4.6 for its expression).

In other words, we show that the prediction set obtained using CCLE is an ellipsoid En
α ⊂ Rℓ. Furthermore, the

volume of this prediction set is asymptotically smaller than that of the classical conformal prediction ball, under
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mild ellipticity assumptions (Section 4.3). Elliptical distributions are those whose level sets are elliptical, such as
the Gaussian ones. As we will see later, we are actually able to identify two different ρn,α satisfying Theorem
1.1, each with different properties concerning the associated ellipsoid. The first one, corresponding to the joint
Mahalanobis score (Section 3.2), leads to ellipsoid En

α such that P(En
α = ∅) > 0 and P(En

α = Rℓ) = 0; whereas the
second, corresponding to adjusted Mahalanobis score (Section 3.5), leads to ellipsoid Fn

α such that P(Fn
α = ∅) = 0

and P(Fn
α = Rℓ) > 0 (this probability tending to 0 as n tends to ∞). Notably, the second ellipsoid reduces to the

conditional prediction set with a minimal volume, in the case of Gaussian data, when n tends to ∞ (Propositions
4.4 and 4.7).

Let us note that to calculate the conditional linear expectation, we will use a ridge estimator for the covariance.
This is motivated by three facts. First, it stabilizes the numerical procedure [26], Section 4.4. Secondly, it simplifies
several proofs (see e.g. Proposition 3.4). Last but not least, our method will be carried out in an infinite dimensions
setting (see [19]) where finite size ellipsoids are rather well-understood (see e.g. Propositions 6.1 to 6.3 in [16]).

Before presenting the outline of our paper, let us further discuss the use of ellipsoidal confidence regions in CI. In
[23] and [36] the authors construct local ellipsoidal confidence regions in a standard multivariate CI setting. While
our method effectively relies on the conditional linear covariance (see Section 3.3), the local ellipsoids described
in [36] correspond to a convex combination of empirical estimates of the global covariance of the residual R and
the true conditional covariance Cov(R|X = x) (even though those local ellipsoids are not presented as estimates
of Cov(R|X = x) in [36]). The latter are estimated by only selecting the observed residuals ri (realisation of Ri)
such that the corresponding xi (realisation of Xi) are the k closest to the observed realisation xn+1 of Xn+1. A
drawback of this nearest neighbour algorithm is that a sufficient amount of observed inputs xi close to xn+1 is
required to obtain meaningful estimates of Cov(Rn+1|Xn+1 = xn+1). The authors of [36] then show the practical
efficiency of their CI method, but do not further study its theoretical properties. CCLE can also be seen as an
intermediate solution between two paradigms: relying on the global (unconditional) covariance matrix Cov(R), or
on the local (fully conditional) covariance matrix Cov(R|X = x). CCLE is then an alternative solution to the
convex combination proposed in [36]. The recent paper [53] also proposes a CI on the residuals leading also to
a confidence ellipsoid. The statistical frame therein is a single realisation of a time series. Here a stationarity
assumption is replacing the exchangeability one. The method stands on the estimated empirical covariance of the
residuals, estimated from the past. Notice that the method does not encompass any conditional information R|X.
The authors show the practical advantage of their method when compared to copula-based CI [35], and establish
conditional coverage properties, in the limit of the large observational horizon (this would correspond to the large
sample size in our framework). In the case of both [36] and [53], the authors do not study the theoretical properties
of the size (volume) of the corresponding confidence regions. We believe that this feature is important in practical
applications, along with the conditional coverage. In our work, we study the volumetric properties of En

α in Section

4.3. Finally, in both [36] and [53], the ellipsoids are centered at the predictor f̂(Xn+1), while our method naturally

corrects f̂(Xn+1) with the empirical conditional linear expectation of R given X (Section 3.3 and Proposition 4.5).

This feature is interesting as f̂ can be biased, which may happen e.g. when f̂ is a black-box neural network.
The paper is organized as follows. We recall some preliminaries on split conformal prediction for regression in

Section 2. The heart of our work is the Section 3 where we discuss the construction of the conformal score and give
some initial results on the induced conformal prediction. This is followed by the Section 4 where we study some
asymptotic properties of the conformal ellipsoid, notably its volume under ellipticity assumptions. We illustrate
and demonstrate the practical effectiveness of our results on simulated data in Section 5. All the technical proofs
and technical lemmas are postponed to Appendices B and C.

2 Background for Split Conformal Inference

Let (Ui)i=1,...,n+1 be (n + 1) exchangeable vectors of random variables, with Ui = (Xi, Yi) ∈ U = X × Y. This
means that the joint distribution of (Ui)i=1,...,n+1 is invariant by any permutation of the symmetric group of order
(n + 1). For example, an i.i.d. sample satisfies this assumption. In our framework we assume that (Ui)i=1,...,n,
called the calibration set (or calibration sample), has been observed and that we get Xn+1. We assume further

that we have at hand a predictor f̂(Xn+1) of Yn+1. In this paper, for the sake of simplicity we assume that this
predictor is deterministic. For example, it had been built using a sample independent of (Ui)i=1,...,n+1 and so we
are working conditionally to the training sample (this is the main assumption of split CI, in contrast with full CI

where f̂ is retrained for each new sample point). The aim is to provide a prediction set for Yn+1. More precisely,
as discussed in the Introduction, our objective is to construct a conservatively valid prediction set for Yn+1 with
a given level of confidence. Hence, we aim to build a set function Cn

α defined on (X × Y)n × X that will return a
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measurable subset of Y for Yn+1 such that

P (Yn+1 ∈ Cn
α ((Xi, Yi)i=1...n;Xn+1)) ≥ 1− α . (3)

Notice that in the above probability we have integrated over (Xi, Yi)i=1...n+1. The construction of Cn
α stands on

the notion of conformity. To begin with, we define a nonconformity score. It consists in a map S from Un × U to
R, symmetric in its first n arguments. The empirical distribution built from (S(U1, . . . , Un;Uj))j=1,...,n will be the
main tool to quantify how conformal to U1, . . . , Un, u ∈ U is. Archetypal scores in the usual regression framework
with U = Rk × Rℓ are related to the magnitude of the empirical residual, the most popular example being

S((X1, Y1), . . . , (Xn, Yn), (x, y)) = ∥y − f̂(x)∥, (4)

where ∥ · ∥ is the Euclidean norm of Rℓ. Notice that in this last example the score function only depends on
u = (x, y) but not on the calibration sample (U1, . . . , Un). This will not be the case in the framework that we are
developing in this paper (see the next section).
Let α ∈ (1/(n+1), 1). For the sake of conciseness, we will use the notation S(x, y) := S((X1, Y1), . . . , (Xn, Yn); (x, y)).
For i = 1, . . . , n+ 1, we will also write Si := S(Xi, Yi). Following for example [2], the conformalized prediction set
for Yn+1 when observing Xn+1 is then

Cn
α(Xn+1) ≡ Cn

α((X1, Y1) . . . (Xn, Yn);Xn+1) =
{
y ∈ Y : S(Xn+1, y) ≤ S(nα)

}
. (5)

Here, nα := ⌈(1− α)(n+ 1)⌉ and S(1) ≤ · · · ≤ S(n) denotes the order statistics associated to (Si)i=1...n. By
construction, the above set Cn

α(Xn+1) satisfies

P (Yn+1 ∈ Cn
α(Xn+1)) ≥ 1− α. (6)

The key property ensuring that equation (6) holds is that (Si)i=1,...,n+1 is exchangeable. Moreover, if the noncon-
formity scores (Si)i=1...n have a continuous joint distribution, then we have the following upper bound,

P (Yn+1 ∈ Cn
α(Xn+1)) ≤ 1− α+

1

n+ 1
. (7)

Returning to the regression framework and considering the residual score (4), the prediction set for Yn+1 given
the covariable Xn+1 is

Cn
α(Xn+1) = B

(
f̂(Xn+1), S(nα)

)
,

i.e. the ball with center f̂(Xn+1) and radius S(nα).

3 The Mahalanobis score and main results

3.1 Notations

We will assume that X = Rk and Y = Rℓ, (ℓ, k ∈ N). For any positive integer n1 and n2,Mn1,n2
denotes the set

of all n1×n2 real matrices. For, i = 1 . . . , n, ei denotes the i
th element of the canonical basis of Rn. Set p = k+ ℓ,

for v ∈ Rp \ {0}, π⊥
v denotes the orthogonal projector onto Span(v)⊥. In others words, π⊥

v = Ip − ∥v∥−2vv⊤. 1
denotes the vector compounded by ones on all its components (its dimension will be implicit from the context).
For any α ∈ (0, 1), we set nα := ⌈(1− α)(n+ 1)⌉. All non-column matrices are denoted with bold letters. For any
block matrix M =

(
A B
C D

)
, we will denote the Schur complement (whenever it exists ) by M/A := D −CA−1B.

The abbreviation SLLN stands for the strong law of large numbers. Given A ∈Mn1,n2
(n1, n2 ≥ 1), its Frobenius

norm is denoted as ∥A∥2F := Tr(AA⊤). Given A,B ∈ Mn,n two symmetric matrices, A ≼ B means that B − A is
nonnegative definite. Let ξ be real random variable and α ∈ (0, 1), q1−α(ξ) denotes its quantile of order 1− α, i.e.
q1−α(ξ) = inf{r ∈ R :P(ξ > r) ≤ α}. Recall also that we have a predictor f̂ independent of the calibration sample

and that we denote the residual by R := Y − Ŷ , Ŷ = f̂(X). For a square integrable random vector ξ, µξ and Σξ

denote its mean vector and covariance matrix, respectively. We abbreviate “almost surely” as “a.s.”.
P−−→ stands

for convergence in probability,
d
= and

d−→ stand for equality and convergence in distribution, respectively. To finish,
we represent all finite-dimensional vectors as column matrices.

4



3.2 Joint Mahalanobis score

As discussed in the previous section, a useful score used in CI is the (squared) norm of the residual. In this
paper, we will consider a natural generalization of the previous score by considering some statistical evaluation of
(R − µR)

⊤Σ−1
R (R − µR) (assuming that everything here is well defined). Before explaining how we will estimate

and handle the previous quantity, let it first bulk up by including X in the score. For this purpose, let V :=
(X⊤ R⊤)⊤ ∈ Rp and set

S = (V − µV )
⊤Σ−1

V (V − µV ). (8)

As before, we assume here that everything is well defined. The intuition behind this score is to work with stan-
dardized quantities. One may recognize in (8) the so-called Mahalanobis quadratic form, which in turn defines the
Mahalanobis metric. This metric is classical in multivariate analysis and widely used for example for classification
tasks (see [33]). The idea of including the covariate X in the score is inspired by the CI framework for time series,
where X can contain the k previous residuals (see e.g. [31], Section 4.2, or the end of this subsection) : the joint
distribution (X⊤R⊤)⊤ is relevant for predicting the future ℓ residuals (i.e. R).

In the context of CI, the position and covariance parameters of V are of course unknown or even undefined,
and it is natural to replace them with their empirical estimators. Nevertheless, in order to preserve exchangeability
and so the finite sample theoretical guarantees provided by the classical CI procedure, one has to process such
empirical estimators in an exchangeable fashion. Of course, another way to proceed would be to estimate these
parameters separately, similarly to the pre-trained predictor, leading to a double split procedure. The first option
is more challenging and this is our approach here. To begin with, we now introduce precisely our working score.
We first set

Vi =

(
Xi

Ri

)
(i = 1, . . . , n) and, for z ∈ Rℓ, Vn+1(z) =

(
Xn+1

z

)
. (9)

Here, the variable z = y− f̂(Xn+1) (resp. y) is used to locate the most likely potential residuals (resp. predictions)
in the CI machinery. We store the observation vectors Vi, i = 1 . . . , n and the guess Vn+1(z) in a matrix V(z) ∈
Mn+1,p whose first n row are the V ⊤

i , i = 1, . . . , n and the last one is V ⊤
n+1(z). Following equation (9), we decompose

V(z) as V(z) = (X R(z)) with X ∈Mn+1,k and R(z) ∈Mn+1,ℓ. The empirically centered counterpart of V(z) is

W(z) = π⊥
1
V(z). We further compute the ridge empirical covariance matrix Σ̂λ(z) ∈Mp,p,

Σ̂λ(z) =
1

n
W(z)⊤W(z) + λI. (10)

Here, λ > 0 is the ridge parameter. With all these supplementary notations, we are now able to define the score
Si(z) (1 ≤ i ≤ n + 1) as the square of the empirical Mahanalobis norm of Wi(z) (the ith row of W(z) written in
column). Namely, we have

Si(z) = ∥Σ̂−1/2
λ (z)Wi(z)∥2 =Wi(z)

⊤Σ̂−1
λ (z)Wi(z). (11)

It is readily seen that Si(z) is the i
th diagonal element of the following matrix,

S(z) = W(z)

(
1

n
W(z)⊤W(z) + λI

)−1

W(z)⊤

= nW(z)
(
W(z)⊤W(z) + nλI

)−1

W(z)⊤. (12)

Remarkably, and contrarily to the norm residual score, the first n scores (S1(z), . . . , Sn(z)) also depend on z. This
property induces a number of technical difficulties which are dealt with in Section 3.4. To alleviate the notations
we will sometimes omit the dependence in z in the matrix valued functions.

First intuition on the confidence regions associated to S(z) Before continuing with the main results, let us
consider the Gaussian case (X⊤R⊤)⊤ ∼ N (0,Σ). Anticipating Section 4, we replace the ridge empirical covariance

with Σ and set λ = 0. Then, setting T (z) = z−Σ21Σ
−1
11 X with z = y− f̂(X) and using the block inversion lemma

(equation (90)), our score amounts to

S(z) =

(
X
z

)⊤

Σ−1

(
X
z

)
= X⊤(Σ11)−1X + T (z)⊤(Σ/Σ11)−1T (z). (13)
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Assume also that the quantile of order 1 − α of S(R) (denoted by qE1−α) is known, so that we can replace the
empirical quantile usually computed in CI by its theoretical value qE1−α. The confidence region becomes

E∞α = {z : X⊤(Σ11)−1X + T (z)⊤(Σ/Σ11)−1T (z) ≤ qE1−α}. (14)

Under our Gaussianity assumption, qE1−α = q1−α(χ
2(p)). The ellipsoid E∞α has two important features : it is

centered on the conditional expectation E[R|X] = Σ21Σ
−1
11 X and its matrix is equal to the conditional covariance

Cov(R|X) = Σ/Σ11. However, we can see in this simple case that E∞α = ∅ ⇐⇒ X⊤(Σ11)−1X ≥ qE1−α. This
observation suggests the introduction of S′(z), an adjusted version of the score S(z), defined as

S′(z) = S(z)−X⊤(Σ11)−1X = T (z)⊤(Σ/Σ11)−1T (z). (15)

The score S′ is studied in Section 3.5. This new score leads to a second confidence region

F∞
α = {z : T (z)⊤(Σ/Σ11)−1T (z) ≤ qF1−α}, (16)

where qF1−α = q1−α(χ
2(ℓ)) in the Gaussian case. Contrarily to E∞α , this region is never empty as Σ21Σ

−1
11 X ∈ F∞

α .
In return, its finite sample counterpart Fn

α can equal to Rℓ (Section 3.5). Observe finally that when working with
the score matrix (12), it is not obvious anymore that the prediction region built with the score matrix (12) is an
ellipsoid, although we expect to obtain a prediction set similar to E∞α .

Computation of the score Let us comment the effective computation of equation (12) before stating the
upcoming Theorem 3.1. The evaluation of S(z) in (12) is not directly tractable: for each candidate z, both a
matrix inversion and matrix products have to be performed. Fortunately, it turns out that explicit inversion tricks
can be used to overcome this first issue. First, notice that the matrix V(z) is a linear function of z. More explicitly,
we may write V(z) = V(0) +A(z), where A(z) is the rank one matrix given by

A(z) = en+1

( ℓ∑
s=1

zsek+s

)⊤

= en+1(Lz)
⊤, (17)

where L ∈Mp,ℓ is the matrix such that L⊤ = (0ℓ,k Iℓ). Thus,

W(z) = π⊥
1
V(0) + π⊥

1
en+1(Lz)

⊤ = W(0) + v(Lz)⊤. (18)

Here,

v = π⊥
1
en+1 = en+1 −

1

n+ 1
1 =

1

n+ 1
(−1− 1 . . .− 1 n)⊤, with ∥v∥2 =

n

n+ 1
. (19)

Equation (18) shows that W(z) is a rank one perturbation of W(0). This crucial property is exploited in Lemma
B.2, to prove our main Theorem 3.1.

Remark (Time series framework). In the context of time series [31, 44], Ui takes the form Ui = (U t
i )t∈N. Given a

multi-horizon predictor (Û i
t+1, . . . , Û

i
t+ℓ) = f̂(U i

t−k+1, . . . , U
i
t ) one then computes the time series of the residuals,

Ri
t = U i

t−Û i
t . At a given time t, we aim at localizing with high probability the next ℓ residuals, Y = (Rt+1, . . . , Rt+ℓ)

using the k previous ones, X = (Rt−k+1, . . . , Rt). It may also happen that the time series and so the residuals are
both multidimensional (Rs ∈ Rd). This is e.g. the case for time series describing the evolution of a position in R3

(d = 3). In this case, X is a vector in Rkd and Y as a vector in Rℓd. The vector corresponding to the ith time series
takes the form

Vi = (X⊤
i Y ⊤

i )⊤ ∈ Rdk+dℓ. (20)

This time series setting falls in the framework of this paper and will be developed extensively in [18].

The most direct interpretation of the score vector diag(S(z)) = (S1(z), . . . , Sn+1(z)) is the empirical Mahalanobis
distance. This metric is e.g. also the central tool in linear discriminant analysis (LDA) [39], Chapter 9-10. This is
closely related to the Karhunen-Loève decomposition, which consists in finding an orthonormal basis (ξi⊗ϕi)i∈N ⊂
L2(P)⊗ L2(Rd) on which a random field is naturally decomposed. It is worth to notice that other interpretations
in terms of leverage score and shape theory can also be made. The interested reader will find some insights in
Appendix A.1.
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3.3 The first ellipsoid Enα : main theorem

We first need to introduce some notations. While the score S(z) is built on a procedure which is exchangeable in
the (n+1)-sample, we will in fact need quantities that are obtained only using the n sample (V1, . . . , Vn). For this,

we introduce the matrices Bn ∈Mn,p, Σ̂n,λ ∈Mp,p and Pn,λ ∈Mn,n such that

(Bn)ij := (Vi)j −
1

n

n∑
k=1

(Vk)j , Σ̂n,λ :=
1

n
B⊤

nBn + λIp =

(
Σ̂11

n,λ Σ̂12
n

Σ̂21
n Σ̂22

n,λ

)
, (21)

Pn,λ := Bn(B
⊤
nBn + nλIp)

−1B⊤
n =

1

n
BnΣ̂

−1
n,λB

⊤
n . (22)

Above, Σ̂11
n,λ ∈Mk,k, Σ̂

22
n,λ ∈Mℓ,ℓ, Σ̂

12
n ∈Mk,ℓ, and Σ̂21

n = (Σ̂12
n )⊤ ∈Mℓ,k. Bn contains the data of the n-sample

after being centered with their empirical mean, and Σ̂n,λ is the corresponding empirical ridge covariance matrix.
The matrix Pn,λ is a regularized orthogonal projector, that is, Pn,0 is an orthogonal projector, P⊤

n,λ = Pn,λ and
0 ≼ Pn,λ ≼ Pn,0 for λ > 0. Denoting pi,n = (Pn,λ)ii (pi,n ∈ [0, 1]) we set

qn,α := np(nα), (23)

the nthα order statistic of the n-tuple (np1,n, . . . , npn,n). Note that p(nα) is the empirical quantile of order (1 −
α)(n + 1)/n for the n-tuple (p1,n, . . . , pn,n), and not 1 − α (apply e.g. [47], p. 305). Contrarily to standard n-
samples, the pi,n are not independent. For example, they are constrained by the following deterministic inequality:∑n

i=1 pi,n = Tr(Pn,λ) ≤ Tr(Pn,0) = rank(Pn,0) ≤ p.
We can now state our first main result.

Theorem 3.1. Let α ∈ (1/(n+1), 1). let ((X1, Y1), . . . , (Xn+1, Yn+1)) ∈ (X ×Y)n+1 exchangeable pairs of random
vectors. If qn,α ≥ n− 1, we set Enα := Rℓ. If qn,α < n− 1, we define Enα as the following ellipsoid,

Enα = {z ∈ Rℓ : (z − Zn
0 )

⊤A−1
n (z − Zn

0 ) ≤ ρn,α}, (24)

where, setting Xn := n−1
∑n

i=1Xi, Rn := n−1
∑n

i=1Ri and X
c
n+1 = Xn+1 −Xn,

An = Σ̂n,λ/Σ̂
11
n,λ, (25)

Zn
0 = Σ̂21

n (Σ̂11
n,λ)

−1Xc
n+1 +Rn, (26)

ρn,α =
qn,α + 1

1− (qn,α + 1)/n
− 1− (Xc

n+1)
⊤(Σ̂11

n,λ)
−1Xc

n+1. (27)

Then the set Enα satisfies

P(Yn+1 − Ŷn+1 ∈ Enα) ≥ 1− α. (28)

The ellipsoid in Theorem 1.1 is recovered by En
α = {Ŷn+1}+Enα , in the sense of the usual Minkowski set addition.

An important feature of Lemma B.3 is that An does not depend on Vn+1. Likewise, ρn,α and Zn
0 depend on

Vn+1 only through Xn+1. Interestingly, when the distribution of V1 is elliptical (see Section 4.3) and V1 admits
second order moment, the matrix An corresponds to an empirical estimate of the conditional covariance matrix
Cov(R1|X1), up to a random positive multiplicative constant (see [39], Theorem 1.5.4). In fact, one can see from
equation (24) that only ρn,αAn is uniquely defined. This allows us to interpret An as an empirical conditional
covariance matrix for such distributions, up to a rescaling of ρn,α with the said multiplicative constant.

Remark (Empirical linear conditional expectation). Observe that Zn
0 = ên + ÂnXn+1, where

Ân = Σ̂21
n (Σ̂11

n,λ)
−1, ên = Rn − ÂnXn. (29)

Interestingly, it is easily shown that (ên, Ân) is an M-estimator obtained by minimizing

Tn(e,A) =
1

n

n∑
i=1

∥Ri − e−AXi∥2 + λ∥A∥2F , (30)
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which simply corresponds to ridge multivariate linear regression. The continuous counterpart of Tn is T (e,A) =
E[∥R− e−AX∥2] + λ∥A∥2F , which is minimal for A∗ = Σ21(Σ11

λ )−1 and e∗ = E[R1]−A∗E[X1]. The pair (e∗, A∗)
yields the best affine approximation of R in terms of X, in the sense of L2(P), and the resulting affine map is known
as the linear conditional expectation ([26], e.g. Theorem 4.14). In comparison, the (full) conditional expectation

is obtained by minimizing the map T (f) = E[∥R− f(X)∥2] over all measurable maps f . Finally, An and (ên, Ân)

are linked together by minTn = Tn(ên, Ân) = Tr(An)− ℓλ.
In the previous theorem, the introduced objects are not exchangeable in terms of the (n+1)-sample. Netherve-

less, we will show in next section how the ellipsoid Enα can be exchangeably rewritten.

3.4 From the score matrix S(z) to the ellipsoid Enα
An important first step consists in rewriting the score matrix S(z), using the fact that W(z) can be written as a
rank-one perturbation (see eq. (18)). Applying then Lemma B.2 to S(z), we obtain that S(z) is of the form

S(z) = nCn − n
bn(z)bn(z)⊤

1 + dn(z)
. (31)

Detailed expressions of Cn, b
n(z) and dn(z) are given in Lemma B.4. Notably, the vector bn(z) is affine in z and

dn(z) is a positive quadratic form in z. Recall that we are interested in the diagonal terms (S(z))ii, hereinafter
denoted by Si(z) for short. Equation (31) implies that the evaluation of the full score vector (S1(z), . . . , Sn+1(z))
requires only one matrix inversion (D−1

µ , see Lemma B.2), instead of one inversion per z candidate if using formula
(12). The second step consists in applying Lemma B.3, which shows that Cn in equation (31) is given by

Cn =

(
Pn,λ 0n,1

01,n 0

)
+ ww⊤ ∈Mn+1,n+1, w :=

v

∥v∥ . (32)

Here, Pn,λ is given in equation (22). In particular, for i ∈ {1, . . . , n}, (Cn)ii = pi,n + 1/n(n+ 1). In fact, Cn does
not depend on Vn+1, while dn(z) and b

n(z) only depend on Vn+1 through Xn+1.
Note that up until now, the expression for the score S(z) is exact. However, a limitation remains: the scores

Si(z) of the first n examples also depend on z = y − Ŷ n+1. In particular, the conformal region Cn
α for our score is

Cn
α = {Ŷn+1}+ Cnα, where

Cnα = {z ∈ Rℓ : Sn+1(z) ≤ S(nα)(z)}. (33)

Here, S(nα)(z) is the nthα order statistic of the n-tuple (S1(z), . . . , Sn(z)). As such, the computation of the region
Cnα still requires that the scoring rule be tested for each y ∈ Ytrial. To alleviate this second computational difficulty,
a simple approximation of the confidence region is given by the next lemma.

Lemma 3.2 (Conservative approximation of Cnα). Let α ∈ (1/(n+ 1), 1). Introduce the set C̃nα, defined as

C̃nα :=

{
z ∈ Rℓ : Sn+1(z) ≤ qn,α +

1

n+ 1

}
. (34)

Then Cnα ⊂ C̃nα; as a result, P(Yn+1 − Ŷn+1 ∈ C̃nα) ≥ 1− α.
Before commenting Lemma 3.2 above, we can already state our main result, which completes the proof of

Theorem 3.1.

Proposition 3.3. Under the assumptions of Theorem 3.1, C̃nα = Enα .
The approximation given in equation (34) corresponds to discarding the contribution bn(z)bn(z)⊤ in Si(z) for

i ̸= n+ 1 in equation (31), observing that Si(z) ≤ n(Cn)ii uniformly in z. This approximation is further justified
by Proposition 3.4 below, which states that under additional moment assumptions, the surplus volume converges
to 0 in probability. Note however that currently, we are not able to prove an upper bound similar to equation (7)

for C̃n
α .

Proposition 3.4. Assume that the Vi are iid, that λ > 0 and that E[∥V1∥4q] < +∞ for some q > 1. Then for all
compact set K ⊂ Rℓ,

Vol
(
(Enα \ Cnα) ∩K

) P−−−−→
n→∞

0. (35)
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The interested reader will find in Appendix A.2 discussions on the settings of the above Proposition, in particular
the case λ = 0 and the finite 4q-th moment assumption.

We conclude this section with the following lemma, which provides a sufficient condition on n and p = k+ ℓ so
that full space ellipsoids (Enα = Rℓ) never occur.

Lemma 3.5 (Sufficient condition for bounded ellipsoids). For all λ ≥ 0, we have qn,α < n − 1 almost surely as
soon as n > p+ 1 and

α ≥ p+ 1

n+ 1
. (36)

A sharper bound, where λ and maxSpec(Σ̂n,λ) appear, can be obtained by writing an SVD of Pn,λ. Equation
(36) is to be compared with the standard requirement in conformal inference that α > 1/(n + 1). Note also that
n+ 1 and p are the number of rows and columns of V, respectively. In practice, we observe that qn,α < n− 1 may
hold even if p+ 1 ≥ n, the proof of Lemma 3.5 being a worst-case analysis.

Metrics of the ellipsoid An important metric related to the shape of an ellipsoid is its principal eccentricity.
Given an ellipsoid E = {z ∈ Rℓ : (z − z0)A−1(z − z0) ≤ 1}, this corresponds to

e =
√

1− λm/λM ∈ [0, 1), (37)

where λm is the smallest eigenvalue of A and λM is the largest one. Roughly speaking, this metric measures how
“different” is a given ellipsoid from a ball, the latter corresponding to e = 0. Likewise, if e is close to 1 then E is
accordingly flat. The volume of E above is

Vol(E) = vℓ
√
det(A), where vℓ = πℓ/2/Γ(ℓ/2 + 1). (38)

Here, vℓ corresponds to the volume of the ℓ-dimensional unit ball. In our case, the determinant of An can be
further computed as (see e.g. [20], Section 0.8.5)

det(An) = det
(
Σ̂n,λ/Σ̂

11
n,λ

)
= det

(
Σ̂n,λ

)
/ det

(
Σ̂11

n,λ

)
. (39)

Case where Enα is empty Empty confidence regions Enα correspond to ρn,α < 0. This event has a non-null
probability, as e.g. visible from equation (55) (still, P(Enα = ∅) ≤ α by construction). To understand the event
{Enα = ∅}, observe that Enα can be written as Enα = V(Xn+1)∩E , where V(Xn+1) is an ℓ-dimensional affine subspace
of Rk+ℓ and E is a (k + ℓ)-dimensional ellipsoid. They are given by, for some explicit βn > 0,

V(Xn+1) := {v = (x⊤r⊤)⊤ ∈ Rk+ℓ : x = Xn+1},

E := {v ∈ Rk+ℓ : (v − V n)
⊤(Σ̂n,λ)

−1(v − V n) ≤ βn}, V n =
1

n

n∑
i=1

Vi.

(to obtain E , combine equations (125) and (126)). In this setting, Enα is empty precisely when V(Xn+1) ∩ E = ∅.
This is interpreted as Xn+1 being so abnormal (w.r.t. the score S(z)) that no value of z can make the pair
(X⊤

n+1 z
⊤)⊤ conform to the samples (V1, . . . , Vn). While this is unexpected from a UQ perspective, this is natural

in the context of outlier detection : Xn+1 is so abnormal that (X⊤
n+1 z

⊤)⊤ is always an outlier, whatever the value
of z.

Empty confidence regions can be problematic from an applied perspective. Moreover, empty Enα are not devoid
of information, since An and Zn

0 are still defined when ρn,α < 0. To capitalize on An and Zn
0 as well as avoid

empty confidence regions, we can replace ρn,α with ρεn,α = max(ρn,α, ε
2), where ε > 0 is a length associated to a

minimum user set volume Vmin. The ellipsoid is then given by

(z − Zn
0 )

⊤(ρεn,αAn)
−1(z − Zn

0 ) ≤ 1. (40)

ε is found by solving Vmin = vℓ
√

det(ρεn,αAn) = vℓε
ℓ
√
det(An), i.e.

ε =
(
Vmin/

(
vℓ det(An)

1/2
))1/ℓ

. (41)

By construction, this procedure leads to overcoverage, but if Vmin is chosen small enough (e.g. if Vmin ≪ E[Vol(Enα)]),
it will not affect the empirical average volume of the confidence ellipsoid Enα,ε, since the cutoff ρε = max(ρ, ε2) is
only activated when the volume of Enα is very small or null.

A more mathematically sound way of avoiding empty regions is found by using the score S′(z) introduced below.
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3.5 The adjusted Mahalanobis score and the second ellipsoid Fn
α

Following equation (15), we can correct the score matrix (12) to prevent empty confidence regions, by subtracting
the X part of S(z) to S(z). Explicitly, define F := π⊥

1
X ∈Mn+1,k, where the ith row of X is X⊤

i , and introduce

S′(z) := S(z)− SX , SX = F

(
1

n
F⊤F+ λIk

)−1

F⊤. (42)

As with S(z), the associated score for Vi is S′
i(z) = S′(z)ii and the associated conformal set is {z : S′

n+1(z) ≤
S′
(nα)(z)}, where S′

(nα)(z) is an order statistic built from (S′
1(z), . . . , S

′
n(z)). Because X depends on Xn+1 through

a rank-one perturbation, namely X = (X1 . . . Xn 0k,1)
⊤ + en+1X

⊤
n+1, we can use Lemmas B.2 and B.3 to rewrite

SX as

1

n
SX =

(
PXX

n,λ 0n,1

01,n 0

)
+ ww⊤ − bnX(bnX)⊤

1 + dXn
, (43)

for some matrix PXX
n,λ ∈ Mn,n, some vector bnX ∈ Mn+1,1 and some dXn ∈ R+ (see Lemma B.5 for expressions).

Notably,

dXn =
1

n+ 1
(Xc

n+1)
⊤(Σ11

n,λ)
−1Xc

n+1, Xc
n+1 = Xn+1 −Xn.

The matrix S′(z) is finally written as

S′(z) = n

(
Pn,λ −PXX

n,λ 0n,1

01,n 0

)
− nb

n(z)bn(z)⊤

1 + dn(z)
+ n

bnX(bnX)⊤

1 + dXn
.

As in Lemma 3.2, we can discard the bn(z) term in S′
i(z), for i ̸= n+ 1, leading to a second ellipsoidal set Fn

α . To
describe this set, we finally need to introduce

p′i,n := (Pn,λ −PXX
n,λ )ii +

(bnX)2i
1 + dXn

, and q′n,α := np′(nα), (44)

where p′(nα) is the order statistic of order nα of (p′1,n, . . . , p
′
n,n). As in Lemma 3.2, p′i,n corresponds to S′(z)ii after

discarding the bn(z)i term. The analog of Theorem 3.1 for the score S′(z) is the following, which describes a second
ellipsoid Fn

α .

Theorem 3.6. Take the assumptions of Theorem 3.1, and define

tn :=

(
n+ 1

n

)
(1 + dXn ). (45)

If tnq
′
n,α ≥ n, we set Fn

α = Rℓ. Else we set

Fn
α := {z ∈ Rℓ : (z − Zn

0 )
⊤A−1

n (z − Zn
0 ) ≤ ρ′n,α}, (46)

where Zn
0 and An are given in Theorem 3.1, and where

ρ′n,α := t2n
q′n,α

1− tnq′n,α/n
. (47)

Then

P(Yn+1 − Ŷn+1 ∈ Fn
α ) ≥ 1− α. (48)

As for En
α and Enα , the ellipsoid for Yn+1 is recovered by Fn

α = {Ŷn+1} + Fn
α . The only difference between Enα

and Fn
α is the parameter ρ′n,α. The next proposition shows that Fn

α is never empty. However, there is a chance

that Fn
α = Rℓ: there is no equivalent of Proposition 3.4 for Fn

α , except when n tends to ∞.

Proposition 3.7. Under the assumptions of Theorem 3.1, ρ′n,α ≥ 0. In particular, Zn
0 ∈ Fn

α and Fn
α is never

empty. Finally, under the assumptions of Proposition 4.1,

P(Fn
α = Rℓ) −−−−→

n→∞
0.
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Remark (Behaviour of Enα and Fn
α w.r.t. large dXn ). Observe that a large dXn means that Xn+1 is far away from

Xn, in the data metric Σn,λ. Interestingly, Enα and Fn
α have opposite behaviours with reference to large dXn . From

equation (27), large values of dXn correspond to small Enα (Enα = ∅ in the worst case, see Proposition 3.1), while they
correspond to large Fn

α (Fn
α = Rℓ in the worst case, see Proposition 3.6). In the first case, this is interpreted as

Xn+1 being so abnormal that no value of z can make the pair (X⊤
n+1 z

⊤)⊤ conform to the samples (V1, . . . , Vn). In
the second case, this is interpreted as the whole calibration sample (V1, . . . , Vn) being uninformative with reference
to the current sample (X⊤

n+1 R
⊤
n+1)

⊤, when the new input Xn+1 is too abnormal when compared to (X1, . . . , Xn).

4 Asymptotic analysis

4.1 The first asymptotic ellipsoid E∞α
In the limit where n→∞, we are able to state the following result.

Proposition 4.1. Assume that V1 has a well-defined covariance matrix Σ, and that the vectors Vi, i ∈ N are iid.
Denote Vc := V1 − E[V1], with the decomposition Vc = (X⊤

c R
⊤
c )

⊤, Xc ∈ Rk, Rc ∈ Rℓ. Assume also that λ > 0
and that the quantile function of ∥(Σ+ λIp)

−1/2Vc∥2 is continuous on a neighbourhood of 1−α. Write Σ+ λIp in
blockwise fashion, according to the decomposition p = k + ℓ:

Σλ := Σ+ λIp =

(
Σ11

λ Σ12

Σ21 Σ22
λ

)
. (49)

(Σ11
λ ∈Mk,k, Σ22

λ ∈Mℓ,ℓ, Σ12 ∈Mk,ℓ.) Denote qE1−α := q1−α(V
⊤
c Σ−1

λ Vc). Then, as n→∞,

1. (Asymptotic ellipsoid)

qn,α
a.s.−−−−→

n→∞
qE1−α, (50)

An
a.s.−−−−→

n→∞
A∞ := Σλ/Σ

11
λ , (51)

ρn,α
d−−−−→

n→∞
ρ∞,α := qE1−α −X⊤

c

(
Σ11

λ

)−1
Xc, (52)

Zn
0

d−−−−→
n→∞

Z∞
0 := Σ21(Σ11

λ )−1Xc + E[R1]. (53)

2. (Asymptotic volume and probability of empty regions)

Vol(Enα)
d−−−−→

n→∞
vℓ

√
det(Σλ/Σ11

λ )
(
qE1−α −X⊤

c (Σ11
λ )−1Xc

)ℓ/2
+
, (54)

P(Enα = ∅) −−−−→
n→∞

P(X⊤
c (Σ11

λ )−1Xc > qE1−α) ≤ α. (55)

Finally, if Σ is invertible, then all the results above remain true when λ = 0.

In equation (54), we underline that (x)s+ = max(0, x)s ̸= max(0, xs); in particular, (x)s+ = 0 if x ≤ 0. We now
define the random ellipsoid E∞α as

E∞α := {z ∈ Rℓ : (z − Z∞
0 )⊤A−1

∞ (z − Z∞
0 ) ≤ ρ∞,α}. (56)

Observe that E∞α is a confidence region of level 1− α for R1: from equation (90) and the expressions of A∞, Z∞
0

and ρ∞,α, we can show that (see equations (171) and (172))

V ⊤
c Σ−1

λ Vc ≤ qE1−α ⇐⇒ (Rc − Z∞
0 )⊤A−1

∞ (Rc − Z∞
0 ) ≤ ρ∞,α, (57)

and the left-hand side has probability 1 − α from the definition of qE1−α. Next, the distribution of the volume
Vol(E∞α ) volume is equal to that of the right-hand side of (54). In this paper, we do not tackle the question of
random set convergence, i.e in what sense does the convergence Enα → E∞α hold. This study would require the use
of random set theory [38], a perspective that we leave for future work.

Note that the limit volume Vol(E∞α ) is bounded almost surely, hence all its moments are finite (equation (75)).
However, there is no guarantee that the moments of Vol(Enα) converge toward those of Vol(E∞α ). Such a property
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requires additional uniform integrability properties on Vol(Enα), which have to be checked on a case-by-case basis.
For example, this property holds in the Gaussian case (Proposition 4.2). The main obstacle in the proof of
Proposition 4.1 is that of the convergence of the empirical quantile qn,α to qE1−α, as the diagonal elements of Cn

are not independent. Our proof of this result relies on the study of empirical characteristic functions and an almost
sure application of Lévy’s theorem (Lemma B.6). Note that the asymptotic matrix A∞ is the covariance matrix
of π⊥

XR, where π
⊥
XR is the orthogonal projection of R = (R1, . . . , Rℓ) onto [Span(X1, . . . , Xk)]

⊥ in L2(P).
It is worth noticing that the numerical experiments highlight that the asymptotic ellipsoid (as well as its volume)

may still exist when the data are heavy tailed. A starting point to study that case is to note that, according to
equation (24), the region Enα is mostly determined by the product ρn,αAn. Then scalings differing from the one
used in Proposition 4.1 (i.e. (ρn,α/un)(unAn) with un ̸= 1) may be introduced, in the hope that unAn and ρn,α/un
may converge in some sense. The interested reader will find first insights in Appendix A.3 for a further study of
heavy-tailed data.

Remark (Conditional coverage). Although our method is built on a form of conditional procedure, it cannot fulfill
the conditional coverage described in the introduction, even when n→∞. Indeed, if X1 = x, then E∞α is empty as
soon as qE1−α < (x− E[X1])

⊤(Σ11)−1(x− E[X1]) (Proposition 4.1). In particular, for all such x,

P(R1 ∈ E∞α |X1 = x) = P(R1 ∈ ∅|X1 = x) = 0 ̸= 1− α. (58)

To recover conditional coverage, the asymptotic quantile qE1−α = q1−α(V
⊤
c Σ−1Vc) should be replaced with qE1−α(x) :=

q1−α(V
⊤
c Σ−1Vc|X1 = x) in equation (52). Indeed, let us define

ρ∞,α(x) := qE1−α(x)− (x− E[X1])
⊤(Σ11)−1(x− E[X1]), (59)

and define E∞α (x) to be the set E∞α where ρ∞,α has been replaced with ρ∞,α(x). Then, from equation (172), we
recover conditional coverage in the limit where n→∞:

P(R1 ∈ E∞α (x)|X = x) = P((Rc − Z∞
0 )⊤A−1

∞ (Rc − Z∞
0 ) ≤ ρ∞,α(x)|X1 = x)

= P(V ⊤
c Σ−1

λ Vc ≤ qE1−α(x)|X1 = x) = 1− α. (60)

This solution also solves the problem of empty confidence regions described in Section 3. Of course, the main
difficulty is that of the estimation of the conditional quantile q1−α(x). This can be done e.g. using conformalized
quantile regression [43], although the application of this method has to be further studied in our case.

Gaussian data In this paragraph, we assume that V1 is a Gaussian random vector. In this case, Z∞
0 = E[R1|X1]

and A∞ = Cov(R1|X1). In fact, the limit ellipsoid E∞α is an ℓ-dimensional section of the k + ℓ-dimensional
confidence ellipsoid obtained under Gaussianity assumptions over the random vector (X1, R1) (this is also true
under general ellipticity assumptions, see equation (71) for a definition). CCLE can thus be understood as a “non
asymptotic conformal generalisation” of the regions provided by standard Gaussian ellipsoids. In the Gaussian
case, we can further describe the volume of E∞α when λ = 0, notably its moments.

Proposition 4.2. Assume that the vectors Vi are iid, the vector V1 is Gaussian, λ = 0 and min Spec(Σ) > 0.
Denoting Fχ2(m) the CDF of the χ2(m) distribution, we have qE1−α = F−1

χ2(k+ℓ)(1 − α). Next, denoting B(x, y) the

Euler Beta function, we set Ck,ℓ,q := 2−k/2vqℓB(k/2, qℓ/2 + 1)/Γ(k/2). Then for all q > 0,

E[Vol(Enα)q] −−−−→
n→∞

E[Vol(E∞α )q] = Ck,ℓ,q det(Σ/Σ
11)q/2(qE1−α)

(k+qℓ)/2
1F1

(
k

2
,
k + qℓ

2
+ 1,−q

E
1−α

2

)
, (61)

P(Enα = ∅) −−−−→
n→∞

P(E∞α = ∅) = 1− Fχ2(k)

(
F−1
χ2(k+ℓ)(1− α)

)
, (62)

where 1F1 is the Kummer confluent hypergeometric function of the first kind. In particular,

E[Vol(Enα)] −−−−→
n→∞

2−k/2πℓ/2

Γ(p/2 + 1)
det(Σ/Σ11)1/2(qE1−α)

p/2
1F1

(
k

2
,
p

2
+ 1,−q

E
1−α

2

)
. (63)

Formula (61) is empirically verified in Table 1, and Formula (62) is illustrated in Figure 2b. One may wish
to understand the properties of Enα for finite sample size n. The interested reader will find in Appendix A.4 some
discussions on that point, where we identify the distributions of An and dXn , and approximations of those of Pn,0

and pi,n. However we did not manage to identify that of ρn,α.
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4.2 The second asymptotic ellipsoid F∞
α

Under the assumptions of Proposition 4.1, the center Zn
0 and “matrix” An describing the ellipsoid Fn

α obviously
still converge to the limits given in equations (51) and (53), as they are the same as those of Enα . The limit of ρ′n,α
is given in the following proposition.

Proposition 4.3. Take the assumptions of Proposition 4.1, and set

qF1−α := q1−α(T
⊤
c A−1

∞ Tc), where Tc = Rc −Σ21(Σ11
λ )−1Xc. (64)

If E[∥X1∥4q] < +∞ for some q > 1, then

q′n,α
P−−−−→

n→∞
qF1−α, ρ′n,α

P−−−−→
n→∞

qF1−α, and Vol(Fn
α )

P−−−−→
n→∞

vℓ det(Σλ/Σ
11
λ )1/2(qF1−α)

ℓ/2. (65)

We denote by F∞
α the ellipsoid with center Z∞

0 , matrix A∞ and “squared radius” qF1−α. While the convergence
of q′n,α is weaker than that of qn,α, the convergence of ρ′n,α is as strong as that of ρn,α (because the limit of ρ′n,α is
constant, convergence in probability is equivalent to convergence in distribution).

Observe also that contrarily to Proposition 3.7, we additionally require that E[∥X1∥4q] < +∞. While this
assumption is not necessarily tight, it suggests that the convergence of Fn

α towards F∞
α may be slower than that

of Enα towards E∞α , or that it should hold in a weaker sense. This is consistent with the numerical experiments on
Cauchy data (Section 5.2).

The remark on the conditional coverage of E∞α in the previous section also holds for F∞
α if replacing qF1−α with

qF1−α(x) := q1−α(T
⊤
c A−1

∞ Tc|X1 = x). In fact, it is equivalent to estimate qF1−α(x) or qE1−α(x), as from equation
(172),

qE1−α(x) = qF1−α(x) + (x− E[X1])
⊤(Σ11)−1(x− E[X1]).

In particular, ρ∞,α(x) = qF1−α(x), and the conditional ellipsoids E∞α (x) and F∞
α (x) are the same. As opposed to

E∞α though, we recover the conditional coverage for Gaussian data, when using F∞
α .

Proposition 4.4. Assume that V1 ∼ N (m,Σ), that min SpecΣ > 0, and set λ = 0. Then

∀x ∈ Rk, P(Y1 − Ŷ1 ∈ F∞
α |X1 = x) = P(Y1 − Ŷ1 ∈ F∞

α ) = 1− α.

This result is an immediate consequence of the fact that R1 − Σ21(Σ11)−1X1 is independent from X1, when
V1 is Gaussian with Cov(V1) = Σ. Anticipating Section 4.3, this property is unique to Gaussian distributions,
among the family of elliptical distributions (see equation (71) for a definition). In the general elliptical case, the
conditional distributions R1|X1 = x and R1 − Σ21(Σ11)−1X1 still have the same dispersion matrix Σ/Σ11, but
they differ in their generator. Coming back to the Gaussian case, numerical evaluations of formula (63) show that
if V1 is Gaussian and λ = 0, then on average, F∞

α is better than E∞α in terms of volume (see Figure 2c for a plot) :

∀α ∈ (0, 1), Vol(F∞
α ) ≤ E[Vol(E∞α )]. (66)

It remains possible that Vol(E∞α ) ≤ Vol(F∞
α ), which corresponds to the event {X⊤

c (Σ11)−1Xc ≥ qE1−α − qF1−α}.

The corrected predictor An interesting feature of the ellipsoids for Yn+1 is that they are not centered at the

predictor Ŷn+1. Their common center is Ỹn+1 = Zn
0 + Ŷn+1 which is effectively a correction of Ŷn+1. In fact, there

is no guaranty that Ŷn+1 lies in En
α or Fn

α , which is desirable as the predictor may e.g. be biased. On the contrary,
the next proposition shows that under same moment assumptions as for Proposition 4.1, the corrected predictor
Ỹn+1 is asymptotically unbiased.

Proposition 4.5. If E[∥Y1∥] < +∞ then under the assumptions of Proposition 4.1, Ỹn+1 is asymptotically unbiased,
i.e.

E[Ỹn+1] −−−−→
n→∞

E[Y1]. (67)

Moreover, introducing the matrix Mλ := Σλ/Σ
11
λ − λ(Iℓ +Σ21(Σ11

λ )−2Σ12), and assuming there exists q > 1 such
that E[∥V1∥4q] < +∞, we have the asymptotic covariance and mean squared error,

Cov(Ỹn+1 − Yn+1) −−−−→
n→∞

Mλ, E
[
∥Ỹn+1 − Yn+1∥22

]
−−−−→
n→∞

Tr(Mλ). (68)
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4.3 Comparison with the norm residual score

In regression, the standard score is the norm of the residual, S′
i(y) = ∥y− Ŷn+1∥, where ∥ · ∥ is the Euclidean norm

in Rℓ. The corresponding confidence region for Yn+1 is a ball Bn
α centered at Ŷn+1, with squared radius βn,α given

by the nthα order statistic of (∥R1∥2, . . . , ∥Rn∥2). As for En
α and Enα , we introduce Bnα the centered ball with squared

radius βn,α, so that Bn
α = {Ŷn+1}+ Bnα. We begin with describing the asymptotic behaviour of Bnα.

Proposition 4.6. Denote βn,α the nthα order statistic of (∥R1∥2, . . . , ∥Rn∥2), which are assumed iid, and assume
that the quantile function of ∥R1∥2 is continuous on a neighbourhood of 1− α. Then

βn,α
a.s.−−→ q1−α(∥R1∥2). (69)

As a result, the asymptotic volume of the associated ball is deterministic, and given by

Vol(Bnα)
a.s.−−→ vℓq1−α(∥R1∥2)ℓ/2. (70)

Equation (69) is quite intuitive and natural, though we did not manage to find it stated as such in standard
textbooks. We thus provide a proof in the appendix1. Similarly to E∞α , we define B∞α to be the deterministic ball
centered at 0 and with radius q1−α(∥R1∥). Note that, even in the case of Gaussian residuals, q1−α(∥R1∥2) cannot
be expected to be further simplified, as ∥R1∥2 would follow a generalized chi-squared distribution.

Elliptical distributions We can now compare the volumes Vol(E∞α ) and Vol(B∞α ). For this, our main assumption
is that the vector V1 follows an absolutely continuous elliptical distribution. This means that there exists a
nonnegative function g : R+ → R+ such that the density f of V1 is of the form

f(v) ∝ g((v − µ)⊤Σ−1(v − µ)), (71)

for some µ ∈ Rp and Σ ∈ Mp,p, Σ ≻ 0 ([39], Section 1.5). Above, µ, Σ and g are respectively the location
parameter, the dispersion matrix and the generator of the distribution (71) (Σ is defined up to a multiplicative
constant, which can be absorbed in g). Elliptical distributions include multivariate Gaussian and Cauchy distri-
butions. Under the assumptions of Proposition 4.1, Σ = Cov(V1) up to a deterministic constant ([39], p. 34),
although elliptical distributions do not necessarily have finite second order moments. As argued in Appendix A.3,
this constant is irrelevant to define E∞α (in particular its volume) in an unique way, so that in the rest of this
section, we can assume that Σ = Cov(V1). This ellipticity assumption is equivalent to the existence of a random
vector T = (T1, . . . , Tp)

⊤ ∈ Rp with an absolutely continuous spherical distribution, i.e. with a density of the form
f(x) = g(∥x∥2), such that V1 = µ+Σ1/2T .

We first consider the case where k = 0 and λ = 0. In this case, Σλ = Σ = Σ22, and E∞α = F∞
α . Furthermore,

denoting λ1, . . . , λℓ the eigenvalues of Σ, we have det(Σ) = λ1 . . . λℓ. Under such assumptions, V ⊤
c Σ−1Vc =∑ℓ

i=1 T
2
i and ∥R1∥2 is equal to

∑ℓ
i=1 λi(Ti+si)

2 in distribution, for some s = (s1, . . . , sℓ)
⊤ ∈ Rℓ (see the upcoming

Lemma 4.8 for a more general result). In particular,(
Vol(E∞α )

Vol(B∞α )

)2/ℓ

= det(Σ)1/ℓ
q1−α(

∑ℓ
i=1 T

2
i )

q1−α(
∑ℓ

i=1 λi(Ti + si)2)

=
q1−α(

∑ℓ
i=1 T

2
i )

(λ1 · · ·λℓ)−1/ℓq1−α(
∑ℓ

i=1 λi(Ti + si)2)
=

q1−α(
∑ℓ

i=1 T
2
i )

q1−α(
∑ℓ

i=1 δi(Ti + si)2)
, (72)

where δi = λi/(λ1 · · ·λℓ)1/ℓ > 0 verify δ1 · · · δℓ = 1. The comparison of Vol(E∞α ) and Vol(B∞α ) is then settled by
the next proposition.

Proposition 4.7. Let t > 0 and (T1, . . . , Tℓ) be a random vector with an absolutely continuous spherical distribu-
tion, i.e. with a density of the form f(x) = g(∥x∥2), x ∈ Rℓ; assume furthermore that g is non-increasing. For a

fixed t, introduce Ft(s, δ) := P(
∑ℓ

i=1 δi(Ti + si)
2 ≤ t), where s = (s1, . . . , sℓ)

⊤ ∈ Rℓ and δ = (δ1, . . . , δℓ)
⊤ ∈ Rℓ

+.
Then

((0, . . . , 0), (1, . . . , 1)) ∈ argmax
(s,δ)∈Rℓ×Rℓ

+∏
i δi=1

Ft(s, δ) . (73)

In particular, when λ = 0, k = 0 and under the ellipticity assumption (71), Vol(E∞α ) ≤ Vol(B∞α ).

1This proof is a copy of that of Théorème 8.9, p. 90 of the lecture notes [4] (in French).
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The property that the generator g is nonincreasing is an unimodality assumption (see [10], Definition 3.1.1).
Proposition 4.7 relies on the observation that centered balls correspond to level sets of spherical distributions. Note
that no moment assumptions are required for equation (73) to hold.

We now consider the case where k ≥ 1, still with λ = 0. We start with E∞α . Introduce a random vector
T = (T1, . . . , Tp)

⊤ with a spherical distribution, such that V1 = µ +Σ1/2T . To compare the volumes of E∞α and
B∞α , we will need the following lemma which describes the distribution of ∥R1∥2 in terms of that of T .

Lemma 4.8. Assume that T ∈ Rp has a spherical distribution and V1 = µ + Σ1/2T for some µ ∈ Rp and
Σ ∈ Mp,p, Σ ≻ 0. Denote (λ1, . . . , λℓ) the eigenvalues of Σ22. Then, there exists s ∈ Rℓ such that we have the
equality in distribution

∥R1∥2 d
=

ℓ∑
i=1

λi(Ti + si)
2. (74)

Above, the vector s is given by s = D−1/2P⊤µ, where Σ22 = PDP⊤ is an eigendecomposition of Σ22. To
compare Vol(E∞α ) and Vol(B∞α ), we will mimic the case k = 0 (see equation (72)). To do so, we will require the
bound

0 ≤ (qE1−α −X⊤
c (Σ11)−1Xc)+ ≤ qE1−α = q1−α

( k+ℓ∑
i=1

T 2
i

)
(75)

as well as the ratio cα(k, ℓ) defined as

cα(k, ℓ) :=
q1−α

(∑k+ℓ
i=1 T

2
i

)
q1−α

(∑ℓ
i=1 T

2
i

) > 1. (76)

From these two equations as well as Proposition 4.7 and Lemma 4.8, we are able to prove Proposition 4.9 below.

Proposition 4.9. Denote the dependence of E∞α on λ as E∞α,λ. Under the assumptions of Proposition 4.1, if

cα(k, ℓ)

(
det(Σ/Σ11)

det(Σ22)

)1/ℓ

≤ 1, (77)

then Vol(E∞α,0) ≤ Vol(B∞α ). Moreover, if the inequality in equation (77) is strict, then there exists λ0 > 0 such that
for all λ ∈ [0, λ0], Vol(E∞α,λ) ≤ Vol(B∞α ). Finally, λ0 can be chosen as the unique solution to the algebraic equation

det(Σλ0
) = cα(k, ℓ)

−ℓ det(Σ11
λ0
) det(Σ22) . (78)

The condition (77) can be relaxed to having the first part of equation (202) smaller than one. The algebraic
equation for finding λ0 is correspondingly changed as

det(Σλ0) =

(
q1−α(

∑k+ℓ
i=1 T

2
i )

q1−α(
∑ℓ

i=1 δi(Ti + si)2)

)−ℓ

det(Σ11
λ0
) det(Σ22). (79)

The condition (77) enables to identify two distinctive features of the data, when aiming at optimizing the volume
of E∞α : the intrinsic distribution of the Ti and the values of k and ℓ on the one hand, and the structure of Σ on the
other hand. In particular it shows that in order to minimize the volume of E∞α , we are faced with a tradeoff when
using many explanatory variables. As k increases, the determinant of the Schur complement decreases (this can be
seen from the block inversion lemma), but the ratio cα(k, ℓ) increases at the same time. This tradeoff is illustrated
in Section 5.1 (Table 2).

Remark (Optimal choice of explanatory variables). In view of this tradeoff, a natural question is that of the selection
of the best variables within X1 to explain the response variable R1, especially if k is large. For example, if R1 is
independent of (X1)1, the first coordinate of X1, then taking it into account will not decrease the determinant of
the Schur complement, as (when λ = 0) it is equal to the conditional covariance Cov(R1|X1). It will, however,
increase the ratio cα(k, ℓ), thus increasing the volume of E∞α . Likewise, if (X1)1 = (X1)2, then only one of those
random variables is required to explain R1. In our context, this question boils down to that of the research of
active subspaces, which is e.g. studied in [11]. The use of active subspace methods in our framework is left for
future work.
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To deal with the case k ≥ 1, we used the bound (75), which may seem very conservative. This is not entirely true,

in the following sense. Setting S = X⊤
c (Σ11)−1Xc, the expected volume E[Vol(E∞α )] is given by E[(qE1−α−S)ℓ/2+ ] =

(qE1−α)
ℓ/2E[(1 − S/qE1−α)

ℓ/2
+ ], up to a deterministic constant. Assuming that qE1−α → +∞ when α → 0+, we then

deduce from the bound 0 ≤ (1− S/q)+ ≤ 1 (q > 0) and the dominated convergence theorem that

E[(qE1−α −X⊤
c (Σ11)−1Xc)

ℓ/2
+ ] ∼

α→0+
(qE1−α)

ℓ/2. (80)

In particular, the right-hand side in equation (80) corresponds to the bound one would obtain using the conservative
bound (75).

Remark (Conditional coverage for elliptical distributions). If the distribution of V1 is elliptical, it is possible to
obtain the conditional distribution R1|X1 from the observation of β 7→ qβ(V

⊤
c Σ−1Vc), as we can deduce the

spherical density g appearing in equation (71) from this quantile map. For all x, using the definition of the
conditional density and the knowledge (or estimates) of g, µ and Σ, one can do derive the conditional distribution
R|X = x, and q1−α(V

⊤
c Σ−1Vc|X1 = x) in particular, in integral/implicit form. As remarked in Section 4.1, this

conditional quantile is the required quantity to recover conditional coverage using our methodology. The use of
this observation in a practical setting is left for future work.

Contrarily to E∞α , the case k ≥ 1, λ = 0 is easily dealt with for F∞
α .

Proposition 4.10. Set λ = 0, and assume that V1 follows and elliptical distribution with a non-increasing generator
g : R+ → R+. Then we have, almost surely,

Vol(F∞
α ) ≤ Vol(B∞α ). (81)

The key to Proposition 4.10 is the observation that T⊤
c A−1

∞ Tc
d
=
∑ℓ

i=1 T
2
i . This fact can be used together with

Lemma 4.8 and Proposition 4.7 to obtain the desired result. As opposed to Proposition 4.9, the dependence on k of
the asymptotic volume of F∞

α is milder than that of E∞α , when V1 is elliptical. In particular, minimizing Vol(F∞
α )

as a function of k is equivalent to minimizing the determinant

det(Σ/Σ11) = det(Σ22 −Σ21(Σ11)−1Σ12), (82)

which can be shown to be a decreasing function of k using the block-inversion lemma. Thus, one can only hope
the this quantity becomes stationary for large k, and large values of k (a form of complexity) are not penalised,
contrarily to E∞α .

Non elliptical distributions In this paragraph, we assume that k = 0 and λ = 0, so that Σλ = Σ = Σ22 =
Cov(R1) and E∞α = F∞

α . Without ellipticity assumptions, the comparison of Vol(B∞α ) and Vol(E∞α ) can still be stud-
ied for small α by comparing the tail behaviour of the distributions of ∥Σ−1/2(R1−E[R1])∥2 and ∥R1∥2/ det(Σ)1/ℓ.
Indeed, if

P(∥Σ−1/2(R1 − E[R1])∥2 > t) ≤ P(∥R1∥2/ det(Σ)1/ℓ > t) for large t, (83)

then we can show that Vol(E∞α ) ≤ Vol(B∞α ) for α small enough (e.g. adapt the proof of Proposition 4.11, equations
(221) and (222)). In this context, the precise decay of the tail distribution of nonnegative random variables is studied
in [37], when the decay is either exponential or polynomial. More precisely, [37] proves Tauberian theorems, which
link this decay with properties of the Laplace transform of the said distribution. The full use of the results of [37]
in our context is left for future work. For the time being we simply observe that, without ellipticity assumptions, it
is unreasonable to expect that a scoring rule solely based on a covariance analysis of the residuals will always yield
smaller confidence regions than those of the norm residual score. In that sense, the next proposition provides a
counterexample for which our method underperforms when compared to the norm residual score. This proposition
relies on [37], Theorem 1.2.

Proposition 4.11. Let λ1, . . . , λℓ > 0 be such that there exists i ̸= j such that λi ̸= λj, and define δi :=
λi/(λ1 · · ·λℓ)1/ℓ. Then there exists a random vector T ∈ Rℓ with E[T ] = 0 and Cov(T ) = Iℓ such that for large t,

P
( ℓ∑

i=1

T 2
i > t

)
> P

( ℓ∑
i=1

δiT
2
i > t

)
. (84)
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In particular, if R1 = DT where D is diagonal such that Dii = λ
1/2
i , then E[R1] = 0, Σ = Cov(R1) = D2 and for

large t,

P(∥Σ−1/2R1∥2 > t) > P(∥R1∥2/ det(Σ)1/ℓ > t). (85)

Thus, if k = 0 and λ = 0, then for α small enough , Vol(B∞α ) < Vol(E∞α ).

We see that the inequality (85) is reversed when compared to (83). The vector T above is built using independent
gamma distributions : T 2

i ∼ γ(δi, δ
−1
i ). The proof of Proposition 4.11 relies on the fact that, despite Ti being

centered with unit variance, the tails of T 2
i do not decay at the same rate (in particular, the Ti are not identically

distributed). Note that in general, such a property cannot hold if the Ti are built from a one dimensional family
of distributions, as fixing the variance would determine the decay rate. This is the reason why we used general
gamma distributions γ(k, θ). In the case k ≥ 1, the same counterexample where ℓ is replaced by p works for F∞

α .
Indeed, from the independence of the Ti, Σ is diagonal, hence Z∞

0 = 0 a.s., Σ/Σ11 = Σ22 and the conclusion of
Proposition 4.11 applies. Counter-examples in expectation with E∞α are easily built for α → 0+ using centered
spherical distributions (µ = 0, Σ = Ip). Indeed, adapting equation (201) applied to such distributions and using
equation (80), we have E[Vol(E∞α )]/Vol(B∞α ) ∼α→0+ cα(k, ℓ)

ℓ/2 > 1.

5 Numerical application

The code for generating both data and figures is given in https://github.com/iain-pl-henderson/PyConfCov.
The workflow is as follow. We first train the predictor on nsplit data points (Xi, Yi). Next, for each of the
ntest test points, we generate ncalib calibration points and perform CCLE. By averaging over those ntest experi-
ments, we obtain a realisation of the empirical average volume and coverage of the resulting ellipsoids, denoted by
Êntest [Vol(Encalib

α )] and 1− Êntest [αEncalib
α

] (replace Encalib
α with Fncalib

α if using Fncalib
α ). We use the same notations

for the balls of the norm residual score, replacing E with B in those notations. We perform this complete procedure
(except for the training of the predictor) nhisto times, to obtain a histogram of the distributions of Êntest

[Vol(Encalib
α )]

and 1 − Êntest
[αEncalib

α
]. We denote the empirical means of those histograms as Ênhisto

Êntest
[Vol(Encalib

α )], and so
forth.

5.1 Gaussian data

We consider the case of iid observations of Gaussian random vectors U1, . . . , Un+1, Ui ∈ Rp, where k = 6, ℓ = 3
and p = k + ℓ = 9, following a N (0,Σ) distribution. Here, we choose Σ such that Σi,j = k3/2(i − j), where
kν is a Matérn covariance function of order ν, with variance σ2 = 1 and lengthscale L = 5 (see equation (107)).
Such a Gaussian vector is a sampling of a centered one dimensional Gaussian process (Ut)t>0 at integer grid points
{1, . . . , 9}, where (Ut)t>0 has the said 3/2−Matérn covariance function. The considered problem is thus that of
the simultaneous conformal inference for the ℓ = 3 next time steps, given the previous k = 6 time steps. In the
numerical experiments, we will represent the results (U7, U8, U9) in (x, y, z) coordinates.

The 3/2-Matérn Gaussian process (Ut)t>0 is a continuous AR(2) process, meaning that it is a solution to a
second order SDE [42], Appendix B.2. As a consequence, the knowledge of Ut−dt and Ut determines the value
of Ut+dt up to a noise of variance of order O(dt). If the lengthscale L is large, then the vector (U1, . . . , U9) can
be understood as a sampling of the Gaussian vector (Ut) with a small sampling period Tsample compared to the
characteristic length of the process (Tsample = 1 ≪ L). As such, using our covariance based score, we expect that
for large lengthscales L, U7 (x coordinate) will hold low uncertainty, U8 (y coordinate) medium uncertainty and
U9 (z coordinate) will hold most of the uncertainty.

The predictor f̂ is obtained by ridge regression trained on previous split data, that is Ŷi = β̂⊤Xi with β̂ =
(X⊤

s Xs + µ0I)
−1X⊤

s Ys, where (Xs Ys) ∈ Mnsplit,p denotes the training data, stored row-wise. Following the split

conformal inference framework, the matrix β̂ will be considered deterministic in the numerical experiments. All
the results correspond to α = 0.1.

Comparison with the norm residual score The histograms in Figure 2a correspond to the Gaussian data
described above. They correspond to nsplit = 5000, ncalib = 200, ntest = 100 and nhisto = 2000. We see that

Ênhisto
Êntest

[Vol(Encalib
α )] = 1.54 and Ênhisto

Êntest
[Vol(Fncalib

α )] = 0.895 while we have Ênhisto
Êntest

[Vol(Bncalib
α )] =

9.35, meaning that the volume of the confidence regions is, on average, divided by 6 using the score S(z) and divided
by 10 using the score S′(z). We also see that our method slightly overcovers (top left and middle histograms):
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(a) Top view
(b) Side view (same ex-
ample)

Figure 1: Sample example of Enα , Gaussian data. Black dot: real value position. Large red dot: center of ellipsoid.

Green dot: predictor Ŷn+1 (also the center of the sphere). Small red dots: other residuals (n = 2000).

the average coverage for Encalib
α and Fncalib

α is 1 − Êntest
[αEncalib

α
] ≃ 1 − Êntest

[αFncalib
α

] ≃ 0.905, while it is 1 −
Êntest [αBncalib

α
] = 0.9004 for the sphere, for a target of 0.9. This is expected from the construction of Encalib

α and
Fncalib

α , since ncalib = 200 is far from the asymptotic regime (see Lemma 3.2 and Proposition 3.4). Still, concerning
the volume of Fn

α (middle column of Figure 2a, bottom row), we can see that the convergence of Vol(Fn
α ) to its

limit Vol(F∞
α ) is already quite advanced, from the width of the associated histogram.

A random realisation of Enα is given in Figure 1 (the corresponding Fn
α has the same appearance, the only

difference with Enα being the squared radius ρn,α). This figure shows that that the calibration residuals (red dots)
are not distributed along the blue ellipsoid. This is also expected : the calibration residuals have a covariance
Cov(R1) = Σ22, while the matrix associated to E∞α is Cov(R1|X1) = Σ22

λ −Σ21(Σ11
λ )−1Σ12.

Study of the moments E[Vol(Enα)q] Table 1 provides an empirical validation of formula (61). These results
were obtained on a centered 3/2-Matérn Gaussian random vector with variance 1 and lengthscale L = 5. The
sample sizes are nsplit = 5000, ncalib = 50000, ntest = 40, nhisto = 1000. The relative error corresponds to

erel =
∣∣E[Vol(E∞α )q]− Ênhisto

Êntest
[Vol(Encalib

α )q]
∣∣∣/E[Vol(E∞α )q]. (86)

Optimal number of input dimensions k In this paragraph, we illustrate the tradeoff principle concerning
Enα , as discussed following Proposition 4.9. we consider a variance σ2 = 1 and a lengthscale L = 5. Following
[42], Section 4.2, Gaussian processes with covariance function kq−1/2 are AR(q) processes. As such, we expect the
optimal value of k to be kopt = q. Indeed, seeing the AR(q) relation as a linear recursive sequence of order q, one
should at least use (U6, . . . , U7−q) to predict U7 accurately, and the minimal reasonable value of k is thus equal to
q. This fact is confirmed by Table 2, which provides empirical estimates of E[Vol(Enα)]. Do note that in numerical
experiments, especially for q = 3 and q = 4, it may happen that the optimal value identified with such empirical
estimates be kopt = q + 1 and not q. Indeed, the corresponding values in the table below are 0.135 versus 0.142
(q = 3) and 2.21e-02 versus 2.29e-02 (q = 4). In fact it should be observed in this example that, after kopt is
reached, the average volume only slightly increases for k > kopt. On the contrary, until kopt is reached, the average
volume is potentially much poorer.

Remark. Even though CCLE is formulated in the standard regression framework, the presented example is essen-
tially a time-series example. However, we do not address the typical issues encountered in conformal inference for

q E[Vol(E∞
α )q ] Ênhisto Êntest [Vol(E

ncalib
α )q ] Rel. err. erel

1 1.4007 1.4039 2.3e-3
2 2.4183 2.4295 4.6e-3
3 4.5815 4.6096 6.1e-3

Table 1: Empirical validation of formula (61).
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(a) Histograms of empirical volumes and coverage (1st row : 25 bins; 2nd row : 40 bins). Red lines : x = 1−α = 0.9. Blue lines

: mean of each histogram. 1st row (left to right) : histograms of 1− Êntest [αEncalib
α

], 1− Êntest [αFncalib
α

], 1− Êntest [αBncalib
α

].

2nd row (left to right) : histograms of Êntest [Vol(E
ncalib
α )], Êntest [Vol(F

ncalib
α )], Êntest [Vol(B

ncalib
α )].
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(b) Histogram of the proportion of empty Encalib
α .

Blue line : mean of the histogram. red line :
asymptotic value given by eq. (62). Black line
: α = 0.1.
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(c) Plot of the ratio E[Vol(E∞
α )]/Vol(F∞

α ), as a
function of α ∈ [10−15, 1 − 10−15], for Gaussian
data. This ratio is always greater than 1.

Figure 2: Numerical results, Gaussian data with α = 0.1, nsplit = 5000, ncalib = 200, ntest = 500 and nhisto = 1000.

time series, such as the balance between longitudinal and transversal coverage [31]. The analysis of our method in
the time-series framework is the topic of an upcoming paper.

5.2 Cauchy data

Proposition 4.1 suggests that the confidence regions Enα may be expected to blow up in volume for heavy tailed
distributions, as the limiting ellipsoid is expressed in terms of the covariance of the data, which is undefined in
this case. On the contrary, since the limit sphere from the standard score S′

i = ∥Y i − Ŷ i∥2 have a deterministic
asymptotic volume, one could expect the standard score to beat our covariance based score in terms of volume.
Here we consider a central multivariate Cauchy distribution, U1 ∼ C(0,Σ) [27], where Σ is the same as that of
Section 5.1, i.e. Σij = k3/2(i − j), σ2 = 1, L = 5 (Σ cannot be interpreted as a covariance matrix anymore). In
particular, C(0,Σ) is an elliptical distribution. The numerical results are given in Figure 4, which corresponds to

Type
k

0 1 2 3 4 5 6

q = 1 22.9 15.2 17.1 19.1 20.5 22.4 23.8
q = 2 4.96 1.32 1.12 1.23 1.33 1.43 1.53
q = 3 2.31 3.02e-01 1.49e-01 1.35e-01 1.42e-01 1.54e-01 1.63e-01
q = 4 1.61 1.25e-01 3.69e-02 2.37e-02 2.21e-02 2.29e-02 2.41e-02

Table 2: Empirical volume of the confidence ellipsoid Enα , for α = 0.1, for Gaussian data.
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(a) Top view (b) Side view (same example)

Figure 3: Sample example of Enα , Cauchy data with ρ = 0.8. Black dot: real value position. Large red dot: center

of ellipsoid. Green dot: predictor Ŷn+1 (also the center of the sphere). Small red dots: other residuals (n = 6000).

nsplit = 3×106, ncalib = 104, ntest = 800 and nhisto = 103 (we have used high values for nsplit and ncalib, hoping that
the corresponding numerical simulations may illustrate a form of convergence of our method for Cauchy data). For

these parameters, we see that our method still exhibits an empirical average volume of Ênhisto
Êntest

[Vol(Encalib
α )] ≃

790, whereas that of the residual score is Ênhisto
Êntest

[Vol(Bncalib
α )] ≃ 1560. Interestingly, these volumes also seem to

exhibit a form of asymptotic normality, suggesting that Enα is indeed robust to distributions with infinite variance.
It also seems that our method is able to recover the matrix Σ/Σ11 (which dictates the dispersion of R1 −

Σ21(Σ21)−1X1), as the shape and orientation of the ellipsoid for Cauchy data is similar to that of the ellipsoid for
Gaussian data (Figures 1 and 3). We refer to Appendix A.3 for further comments on this behaviour. Of course,
the volumes for the Cauchy distribution are several orders of magnitude larger than that of the Gaussian data, but
this is expected as Cauchy distributions are heavy tailed.

Let us turn to Fn
α : because Cauchy data are heavy-tailed and Proposition 3.7 assumes a finite 4qth moment,

we expect that arbitrarily large ellipsoids occur even in the regime of large ncalib (for example we obtained 9 full
space ellipsoids out of 200 × 500 = 105 tests, for ncalib = 1000). For heavy-tailed distributions, histograms are
not easily interpreted because of the large disparity of the observed values. Instead we present in Table 3 with
empirical quantiles of the distribution of Êntest [Vol(Fncalib

α )] compared to those of Êntest [Vol(Bncalib
α )], as a function

of ncalib. This table shows that, from a quantile point of view, the use of Fn
α is increasingly interesting as ncalib

increases, although empirical mean and variance still suffer from the heavy-tailed nature of Cauchy distributions.
Note that Enα does not seem to suffer from this property, as shown in Figure 4 (and as could be conjectured from
Proposition 3.1 and Lemma 3.5).

CI set
ncalib

Quantile
0.1 0.25 0.5 0.75 0.95 0.99 1 Mean Std. dev. Nb. inf.

Fn
α 500

3.6e2 3.9e2 4.3e2 2.4e4 ∞ ∞ ∞ ∞ ∞ 36
Bn
α 9.3e3 9.5e3 9.7e3 9.9e3 1e4 1e4 1.1e4 9.7e3 3.1e2 0

Fn
α 103

3.4e2 3.5e2 3.7e2 4.3e2 3.3e5 ∞ ∞ ∞ ∞ 9
Bn
α 8.84e3 8.94e3 8.61e3 9.07e3 9.2e3 9.38e3 9.51e3 9.07e3 1.8e2 0

Fn
α 104

3.1e2 3.3e2 3.4e2 3.6e2 4e2 8.2e3 9.2e8 1.8e6 4e7 0
Bn
α 8.54e3 8.58e3 8.61e3 8.65e3 8.69e3 8.73e3 8.75e3 8.61e3 5.2e1 0

Table 3: Cauchy data : Empirical quantiles of the distribution of Êntest
[Vol(Fncalib

α )] (empirical volume average
over ntest = 200), estimated from a sample of size nhisto = 500, as a function of ncalib. Last column : number of

full space Fn
α over the ntest × nhisto = 105 test samples used to estimate the quantiles of Êntest

[Vol(Fncalib
α )].
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Figure 4: Empirical volumes and coverage, Cauchy data. nsplit = 3×106, ncalib = 104, ntest = 800 and nhisto = 103.
50 bins were used. Red vertical lines correspond to x = 0.9. Blue vertical lines correspond to the mean of each
histogram.

5.3 Non elliptical data : the inverse Dirichlet distribution

In this section we assume that the distribution of (X⊤
1 Y ⊤

1 )⊤ is supported on the positive orthant Rp
+, with a

density of the form

f(v) ∝ 1

(1 + |v|1)b+|a|1

p∏
i=1

vai−1
i , v ∈ Rp

+. (87)

In equation (87), b > 0, (a1, . . . , ap) is a vector of parameters with ai > 0, and |x|1 =
∑p

i=1 |xi|. V1 is said to follow
the inverted Dirichlet distribution which we denote by V1 ∼ IDirichlet(a1, . . . , ap; b) ([40], Example 8.6). Depending
on its parameters, this distribution is mildly to heavily non elliptical, as is visible from FIgure 5. Observe also that
b controls the decay of the distribution. We next use a linear regressor trained on nsplit = 5000 examples. Practical
experiments show that our method is efficient when the distribution of V1 is approximately elliptical. This can be
seen in Figure 6, which corresponds to k = 1, ℓ = 3, b = 3 and a = (1, 1, 10−1, 10−2). Its bottom histograms show
that for this distribution, the volume of Fn

α is in average much than that of Bnα. A sample corresponding to this
histogram is given in Figure 5, subfigures (a) and (b). These figures show that the set Fn

α was able to capture part
of the directionality associated to the parameters b and a above. We next consider an unfavourable case, where
b = 1 and a = 10−2 × (1, 1, 1, 1). A sample example in given in Figure 5, subfigures (c) and (d). This figure shows
that the calibration residuals are, for the most part, oriented along one of the three x, y or z axes. on this example,
compared to the ball Bn

α, the ellipsoid Fn
α seems to be overly sensitive to the observation of X1. As for the Cauchy

data (Table 3), unfavourable test cases are best studied with a table of empirical quantiles which we provide in
Table 4. This table shows that, even for ncalib = 104, CCLE is severely outperformed by the norm-residual score
(at least two order of magnitudes between corresponding quantiles, even for the empirical quantile of order 0.1).

6 Conclusion

In this article, we have introduced two covariance based scores, for conformal inference in multivariate regression.
We have shown that the resulting confidence regions are conservatively and accurately approximated with an explicit
ellipsoid. We have also studied their asymptotic properties, and compared them with the regions stemming from
the standard conformal score function (norm of the residual) as used in the literature. Our first set of numerical
experiments shows that our scores typically perform better than that of the standard norm score, in the sense that
the corresponding volume is typically much lower than that of the spheres associated with the residual norm score,
provided that the residuals Ri = Yi− Ŷi are not uncorrelated with the input Xi. The next step will be to apply our
methodology on time series, where the adaptivity of our score function may be expected to improve the performance
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(a) Favourable inv. Dirichlet
distribution (side)

(b) Favourable inv. Dirichlet
distribution (side)

(c) Unfavourable inv. Dirichlet
distribution (side)

(d) Unfavourable inv. Dirichlet
distribution (top)

Figure 5: Two sample examples, inverse Dirichlet data. Black dot: real value position. Blue dot: center of ellipsoid.
Green dot: predictor Ŷn+1 (also the center of the sphere). Small red dots: other residuals (6000). Subfigures (a)
and (b) : side views of an example simulated with a favourable inv. Dirichlet distribution (parameters b = 3,
a = (1, 1, 10−1, 10−2).). Subfigures (c) and (d) : side and top views of an example simulated with an unfavourable
inv. Dirichlet distribution (parameters b = 1, a = 10−2 × (1, 1, 1, 1)).

CI set
ncalib

Quantile
0.1 0.25 0.5 0.75 0.95 0.99 1 Mean Std. dev. Nb. inf.

Fn
α 500

8.2e-3 1.1e-2 1.8e-2 4.2e-2 4.2 4.7e4 ∞ ∞ ∞ 3
Bn
α 5.4e-4 5.8e-4 6.3e-4 6.9e-4 7.7e-4 8.6e-4 9.2e-4 6.3e-4 7.7e-5 0

Fn
α 103

1.2e-2 1.5e-2 2.3e-2 4.8e-2 8.2e-1 6.7e2 ∞ ∞ ∞ 1
Bn
α 2.3e-4 2.4e-4 2.6e-4 2.7e-4 2.9e-4 3.1e-4 3.5e-4 2.6e-4 2.3e-5 0

Fn
α 104

4e-2 4.9e-2 6.8e-2 1.1e-1 4.9e-1 2.1 1e3 2.3 45.7 0
Bn
α 3.3e-4 3.3e-4 3.4e-4 3.4e-4 3.5e-4 3.5e-4 3.6e-4 3.4e-4 7.1e-6 0

Table 4: Inverse Dirichlet data with parameters b = 1 and a = 10−2 × (1, 1, 1, 1): empirical quantiles of the

distribution of Êntest
[Vol(Fncalib

α )] (empirical volume average over ntest = 200), estimated from a sample of size
nhisto = 500, as a function of ncalib. Last column : number of full space Fn

α over the ntest × nhisto = 105 test

samples used to estimate the quantiles of Êntest
[Vol(Fncalib

α )].

of CI for time series, especially concerning the longitudinal coverage (coverage within a single sample of the time
series); this study will be accompanied by a Python package. We will soon extend our methodology to functional
data [19]. Finally, a limitation of our scoring rule is that is may not be expected to be optimal for multimodal or

non elliptical distributions of the residuals: the shape of C̃nα is bound to be an ellipsoid. As such, generalizations
of our score may be sought to include moments of order 3, to take asymmetry into account, although the matrix
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Figure 6: Empirical volumes and coverage, Inverse Dirichlet data with b = 3, a = (1, 1, 10−1, 5.10−2). nsplit =
5000, ncalib = 1000, ntest = 200 and nhisto = 500. 25 bins were used. Red vertical lines correspond to x = 0.9.
Blue vertical lines correspond to the mean of each histogram.

algebra may become intractable.

A Additional remarks

A.1 Interpretations of the score vector diag(S(z))

Leverage score Consider a multivariate linear model between the matrices R and X, R = Xβ + ε. The ridge
estimator in this linear regression model is β̂ = (X⊤X + µI)−1X⊤R. Let us denote R̂ = Xβ̂ = X(X⊤X +

µI)−1X⊤R = MR. The leverage score of the ith example is the diagonal coefficient Mii ∈ [0, 1]. As M = ∇RR̂,
the leverage score can be interpreted as a self-influence score. A high leverage scoreMii means that the ith example
(Xi, Ri) is very influential in the behaviour of the linear model [8, 25]. The leverage score has been used, for
example, for outliers detection [8]. This last task can also be tackled using conformal inference [5]. Note further
that the leverage score does not depend on any underlying model nor on Y . Hence, no observational model is
required for computing the leverage score. Our score is thus a form of leverage score, where we replaced the matrix
M by M′ = W(W⊤W + µIp)

−1W⊤. Hence, we jointly consider both the explanatory variables and the residual
errors in the leverage score. Further, there is another difference with the classical leverage score in the centering
step, as we consider W instead of V.

Shape theory In shape theory [15], iid random vectors are observed and stacked, say row-wise, in a matrix V. In
shape theory, one then typically studies the rectangular matrix V according to its polar decomposition, V = PT,
where T is the modulus and P is the orientation (T = (V⊤V)1/2 and P = V(V⊤V)−1/2). The matrices P and
T are then studied separately ([14], [9], Section 1.3.3). In particular, the random orthogonal projector PP⊤ is an
orientation statistic [9], Section 1.3.3, encoding directional information of the data. In our case, when λ = 0, the
connection between our score (12) and the orientation statistic PP⊤ is the equality V(V⊤V)−1V⊤ = PP⊤. As
for the leverage score though, the data is usually not centered in shape theory: our score in equation (12) is, when
λ = 0, n−1S = W(W⊤W)−1W⊤ ̸= V(V⊤V)−1V⊤. In our framework the centering step is useful to deal with

potentially biased predictors f̂ , i.e. non centered residuals.

A.2 Different assumptions for Proposition 3.4

The case λ = 0 Our proof of Proposition 3.4 uses the fact that λ > 0 (equation (137)): if λ = 0, we should

require that min Spec(Σ) > 0. However, even if we can show that min Spec(Σ̂n) tends to min Spec(Σ) almost
surely (proof of Proposition 4.1), adapting the proof of Proposition 3.4 to λ = 0 would require the control of the

moments of min Spec(Σ̂n)
−1, which is a difficult task in itself. We leave the details of the corresponding proof to
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the interested reader, e.g. using that almost surely, min Spec(Σ̂n,0) → min Spec(Σ), from the SLLN on Σ̂n,0 and
the continuity of the spectrum for symmetric matrices (see e.g. [20, Problem 1, p. 198]).

Finite moment of V1 The assumption that E[∥V1∥4q] < +∞ (which is also used in several other places) enables us
to use Jensen’s inequality, to show that supz∈K max1≤i≤n nb

n
i (z)

2 → 0 in probability. Under the weaker assumption
that E[∥V1∥2] < +∞, we can still show that the first n coordinates of bn verify n

∑n
i=1 b

n
i (z)

2 = (1 + ∥z∥2)OP(1),
where the OP(1) term is uniform in z (e.g. adapt equation (164)). Unfortunately, this result alone is not strong
enough to imply equation (35).

A.3 Infinite variance case

From equation (24), E∞α displays a scaling invariance, which we expect to have important implications for the
analysis of our method in the case of heavy tailed data [46], Condition 1.1. For the moment, let us view Σλ and V1
as independent parameters. Observing that A∞, Z

∞
0 and ρ∞,α are functions of Σλ, we denote E∞α = Eα(Σλ, V1).

We now prove that, as sets, Eα(Σλ, V1) = Eα(δΣλ, V1) for all δ > 0. Indeed, assume that Σλ is replaced with δΣλ

for some δ > 0, then from equation (53) Z∞
0 is left unchanged. Likewise, A∞ is changed to δA∞, while

ρα,∞
δ

=
1

δ
q1−α(V

⊤
c Σ−1

λ Vc)−
1

δ
X⊤

c (Σ11
λ )−1Xc

= q1−α(V
⊤
c (δΣλ)

−1Vc)−X⊤
c (δΣ11

λ )−1Xc, (88)

so that the product ρα,∞A∞ = (δ−1ρα,∞)(δA∞) is also unchanged whenΣλ is replaced with δΣλ. Hence, following
equation (57), Eα(Σλ, V1) = Eα(δΣλ, V1). This scaling invariance is, in fact, a key property for building the Tyler
dispersion matrix estimator [46] (see equation (71) and its comments for the dispersion matrix), which is known to
be robust to infinite variance in the case of elliptical distributions. The same scaling arguments can also be made
for F∞

α , but the convergence of ρ′n,α to qF1−α is not at all clear (see e.g. the assumptions of Proposition 4.3), as can
be seen from the numerical experiments with Cauchy data. The further study of our method for heavy-tailed data
is left for future work.

A.4 Non asymptotic analysis in the Gaussian case

One may wish to understand the properties of Enα for finite sample size n. For example, assuming that λ = 0, it is

known that An = Σ̂n/Σ̂
11
n follows the Wishart distributionWℓ(n−k−1, n−1Σ/Σ11) [39], Theorem 3.2.10. We now

turn to the quantities appearing in ρn,α. Observing that
√
n/(n+ 1)Xc

n+1 ∼ N (0,Σ11), that nΣ̂11
n ∼Wk(n−1,Σ11)

and that both are independent [34], Corollary 3.3.3.2, we obtain that [(n−1)/(n+1)](Xn+1
c )⊤(Σ̂11

n )−1Xc
n+1 follows

the Hotelling T 2 distribution T 2(k, n − 1) [34], Theorem 3.5.1. Let us now also assume that E[V1] is known. In
this case, it is reasonable to replace n−1

∑n
i=1 Vi with E[V1] in Bn (equation (21)), so that Bn follows the matrix

normal distribution Bn ∼ N (0, In,Σ) [9], Section 1.5.3. In this case, Pn,0 is a random orthogonal projector whose
distribution is uniform over the so-called “special manifold” Pp,n−p ⊂ Mn,n of orthogonal projectors of rank p,
which is isomorphic to the Grassmanian manifold Gp,n [9], Theorem 2.4.9. Finally, building on [39], Exercise 3.15
p. 117, we can show that (Pn,0)ii follows a Beta distribution B(p/2, (n − p)/2). Note though that those results,
while instructive, are not sufficient to describe the distribution of ρn,α.

When E[V1] is unknown, we expect to obtain perturbations of the distributions above for Pn,0 and (Pn,0)ii.
Still, to our knowledge, there are no simple expressions available in this case. Indeed, the procedure for building
Bn correlates the columns of Bn through equation (94), and Bn ∼ N (0, π⊥

1
,Σ) (here, 1 ∈ Rn). As such, the

distribution of Pn,0 does not seem to be available in closed form since neither π⊥
1

nor Σ are equal to the identity
matrix [9], Chapter 2.

B Technical lemmas

The following lemma will be very useful in several proofs.

Lemma B.1 (Block matrix inversion, [20], equation (7.7.5) p. 472). If M =

(
A B
B⊤ C

)
is invertible and A is

invertible, then M/A = C−B⊤A−1B is invertible and

M−1 =

(
A−1 +A−1B(M/A)−1B⊤A−1 −A−1B(M/A)−1

−(M/A)−1B⊤A−1 (M/A)−1

)
. (89)
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A central consequence of this lemma is that if M is partitioned as above and (x⊤y⊤)⊤ is a similarly partitioned
vector, then setting t = y −A−1Bx,(

x
y

)⊤

M−1

(
x
y

)
= x⊤A−1x+ t⊤(M/A)−1t. (90)

Next, the efficient computation of the score matrix is enabled by Lemma B.2 below, which provides an “explicit”
representation of equation 12, in the case where W (z) is a rank one perturbation of a reference matrix.

Lemma B.2. If µ ≥ 0, M ∈ Mn,p is of the form M = A+ wu⊤ where w ∈ Mn,1, ∥w∥ = 1 and u ∈ Mp,1, then
there exists C ∈Mn,n, b ∈Mn,1 and d ∈ R+ such that

M(M⊤M+ µI)−1M⊤ = C− bb⊤

1 + d
. (91)

C, b and d are given by

C = BD−1
µ B⊤ + ww⊤, b = BD−1

µ r − w, d = r⊤D−1
µ r, (92)

where

B = (I − ww⊤)A = π⊥
wA, Dµ = B⊤B+ µI, r = u+A⊤w. (93)

Above, B+
µ := BD−1

µ is a regularized pseudo-inverse of B⊤: when µ = 0, B+
µB

⊤ is the orthogonal projector

onto the range of B. Note also that B⊤w = A⊤(I−ww⊤)w = 0, hence C = B+
µB

⊤+ww⊤ is also a (µ-regularized)
orthogonal projector. Due to the fact that the score matrix is built upon centered data, the quantities in equation
(91) can be further simplified, as stated in the following lemma.

Lemma B.3. Assume that the matrix A in Lemma B.2 lies inMn+1,p, that it is of the form A = π⊥
1
V for some

matrix V ∈ Mn+1,p, and that w in Lemma B.2 is w = v/∥v∥, where v is given in equation (19). Then B is given
by

Bij = Vij −
1

n

n∑
l=1

Vil, e⊤n+1B = 0 (null last row). (94)

The last equation implies that for C and b given in Lemma 3.1,

(bb⊤)n+1,n+1 = b2n+1 = Cn+1,n+1 = w2
n+1 = n/(n+ 1). (95)

The key property for this lemma to hold is that 1⊤v = 0. Applying this lemma to our score, we can further
describe the elements of the score matrix S(z).

Lemma B.4. In the expression of the score matrix

S(z) = nCn − n
bn(z)bn(z)⊤

1 + dn(z)
, (96)

the matrix Cn, the vector bn(z) and the scalar dn(z) are given by

Cn =

(
Pn,λ 0n,1

01,n 0

)
+ ww⊤, (97)

dn(z) =
1

n
rn(z)

⊤Σ̂−1
n,λrn(z), bn(z) =

1

n

(
BnΣ̂

−1
n,λrn(z)

0

)
− w. (98)

Here, rn(z) is given by

rn(z) = ∥v∥
[(

Xn+1

z

)
− 1

n

n∑
i=1

Vi

]
∈Mp,1. (99)

Above, rn(z) corresponds to r in Lemma B.2. Do note that above, v and w also depend on n. We can use the
same arguments (lemmas B.2 and B.3) to obtain a similar expression for the matrix SX defined in equation (42).
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Lemma B.5. We can write the matrix SX as

SX = nCX
n − n

bnX(bnX)⊤

1 + dXn
, (100)

where the vector bnX and the scalar dXn are given by

dXn =
1

n+ 1
(Xc

n+1)
⊤(Σ̂11

n,λ)
−1Xc

n+1, bnX =
∥v∥
n

(
BX

n (Σ̂11
n,λ)

−1Xc
n+1

0

)
− w. (101)

In bnX , BX
n is the left n× k block of Bn and CX

n is given by

CX
n =

(
PXX

n,λ 0n,1

01,n 0

)
+ ww⊤, where PXX

n,λ = BX
n

(
(BX

n )⊤BX
n + nλIk

)−1

(BX
n )⊤.

Above, be wary that PXX
n,λ is not a sub-block of Pn,λ. Our last lemma is pivotal to Section 4.

Lemma B.6. Take the assumptions of Proposition 4.1. Then we have that almost surely,

∀t ∈ Rp,
1

n

n∑
j=1

exp
(
it⊤Σ̂

−1/2
n,λ (Vi − V n)

)
−−−−→
n→∞

E
[
exp

(
it⊤Σ

−1/2
λ Vc

)]
, (102)

where V n = n−1
∑n

i=1 Vi and Vc = V1 − E[V1]. In particular, under the assumptions of Proposition 4.1,

qn,α
a.s.−−−−→

n→∞
qE1−α. (103)

Next, for all i ∈ {1, . . . , n}, set p′′i,n := (Pn,λ − PXX
n,λ )ii and define q′′n,α as the order statistic of order nα of the

n-tuple (np′′1,n, . . . , np
′′
n,n). Then under the assumptions of Proposition 4.1,

q′′n,α
a.s.−−−−→

n→∞
qF1−α. (104)

Finally, if additionally E[∥X1∥4q] < +∞ for some q > 1 and taking the definition of q′n,α in equation (44), then

q′n,α
P−−−−→

n→∞
qF1−α. (105)

The main difficulty of this lemma is the fact that qn,α (resp. q′n,α) is an order statistic built from (np1,n, . . . , npn,n)
(resp. (np′1,n, . . . , np

′
n,n)) , which are identically distributed but not independent.

Matérn covariance functions We conclude this section with the expressions of the Matérn covariance functions
that are used in Section 5. Setting H = |h|

√
2ν/L, kν is given by [42], Section 4.2 p 85,

kν=1/2(h) = σ2 exp(−H), (106)

kν=3/2(h) = σ2(1 +H) exp(−H), (107)

kν=5/2(h) = σ2(1 +H +H2/3) exp(−H), (108)

kν=7/2(h) = σ2(1 +H + 2H2/5 +H3/15) exp(−H). (109)

C Proofs

Proof of Lemma B.2. We have

M⊤M = A⊤A+ (uw⊤A+A⊤wu⊤) + uu⊤ = A⊤A+ (u+A⊤w)(u+A⊤w)⊤ −A⊤ww⊤A

= (A⊤A−A⊤ww⊤A) + rr⊤ = B⊤B+ rr⊤. (110)
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With Dµ := B⊤B+ µI, the Sherman-Morrison formula yields

(M⊤M+ µI)−1 = (B⊤B+ µI+ rr⊤)−1 = D−1
µ −

D−1
µ rr⊤D−1

µ

1 + r⊤D−1
µ r

= D−1
µ −

D−1
µ rr⊤D−1

µ

1 + d
. (111)

Moreover,

M = A+ wu⊤ = (I − ww⊤)A+ ww⊤A+ wu⊤ = B+ w(A⊤w + u)⊤ = B+ wr⊤. (112)

Next, denoting B+
µ := BD−1

µ ,

M(M⊤M+ µI)−1M⊤ = M

(
D−1

µ −
D−1

µ rr⊤D−1
µ

1 + d

)
(B⊤ + rw⊤)

= M

(
D−1

µ B⊤ +D−1
µ rw⊤ − D−1

µ rr⊤D−1
µ B⊤

1 + d
− D−1

µ r(r⊤D−1
µ r)w⊤

1 + d

)
= M

(
D−1

µ B⊤ +D−1
µ rw⊤ − D−1

µ rr⊤D−1
µ B⊤

1 + d
− d

1 + d
D−1

µ rw⊤
)

= (B+ wr⊤)

(
D−1

µ B⊤ +
D−1

µ rw⊤

1 + d
− D−1

µ rr⊤D−1
µ B⊤

1 + d

)
= B+

µB
⊤ +

B+
µ rw

⊤

1 + d
− B+

µ rr
⊤(B+

µ )
⊤

1 + d
+ wr⊤(B+

µ )
⊤

+
d

1 + d
ww⊤ − d

1 + d
wr⊤(B+

µ )
⊤

= B+
µB

⊤ +
B+

µ rw
⊤

1 + d
− B+

µ rr
⊤(B+

µ )
⊤

1 + d
+
wr⊤(B+

µ )
⊤

1 + d
+

d

1 + d
ww⊤

= B+
µB

⊤ +
d

1 + d
ww⊤ − (B+

µ r − w)(B+
µ r − w)⊤ − ww⊤

1 + d

= B+
µB

⊤ + ww⊤ − (B+
µ r − w)(B+

µ r − w)⊤
1 + d

,

which concludes the proof.

Proof of Lemma B.3. Observe first that B = π⊥
v π

⊥
1
V, with π⊥

v π
⊥
1
= In+1 − (n+ 1)−1

11
⊤ −ww⊤, since w⊤

1 = 0.
Now, denoting 1n ∈ Rn the vector made up of ones (the difference with 1 is that 1 ∈ Rn+1), a simple computation
shows that

ww⊤ =

( 1
n(n+1)1n1

⊤
n − 1

n+11n

− 1
n+11

⊤
n

n
n+1

)
=

1

n+ 1

(
1
n1n1

⊤
n −1n

−1⊤
n n

)
. (113)

Therefore,

In+1 −
1

n+ 1
11

⊤ − ww⊤ =

(
In 0n,1

01,n 1

)
− 1

n+ 1

(
1n1

⊤
n 1n

1
⊤
n 1

)
− 1

n+ 1

(
1
n1n1

⊤
n −1n

−1⊤
n n

)
=

(
In − 1

n1n1
⊤
n 0n,1

01,n 0

)
. (114)

In particular, writing V blockwise as V⊤ = (V⊤
0 V⊤

n+1), where V0 ∈Mn,p and Vn+1 ∈M1,p, then

B =

(
In+1 −

1

n+ 1
11

⊤ − ww⊤
)
V =

(
(In − 1

n1n1
⊤
n )V0

01,n+1

)
, (115)

which finishes the proof of equation (94). As a consequence, the last coordinate of D+
µ r is null: (D+

λ r)n+1 =(
BD−1

µ r
)
n+1

= (e⊤n+1B)D−1
µ r = 0. Thus,

(
bb⊤
)
n+1,n+1

=
(
(B+

µ r − w)(B+
µ r − w)⊤

)
n+1,n+1

=
(
(B+

µ r − w)n+1

)2
= w2

n+1 =
n

n+ 1
. (116)

Using the same reasoning, (B+
µB

⊤)n+1,n+1 = 0 and thus, Cn+1,n+1 = w2
n+1 = n/(n+ 1).
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Proof of Lemma B.4. Given z ∈ Rℓ, we apply Lemma B.2 to n−1S(z) (equation (85)) by setting A = W(0),
u = ∥v∥Lz, w = v/∥v∥ and µ = nλ. We thus express n−1S(z) in the form

n−1S(z) = C− bb⊤

1 + d
,

where C, b and d are given in Lemma B.2. We next apply Lemma B.3, using that A = W(0) = π⊥
1
V(0). The

matrix B is thus given by

B =

(
Bn

01,p

)
∈Mn+1,p, (117)

where Bn is given in equation (21). From equation (117) and Lemma B.2, we obtain the expression of Cn

(equation (32)). Next, from Lemma B.2, dn(z) = rn(z)
⊤D−1

nλrn(z), where rn(z) = ∥v∥Lz +W(0)⊤w. We observe

that D−1
nλ = n−1Σ̂−1

n,λ, which yields the expression of dn(z). The same observation and equation (117) yield the
expression of bn(z). Finally, we simplify rn(z), as

rn(z) = ∥v∥Lz +W (0)⊤w = ∥v∥
(
0
z

)
+ ∥v∥−1V(0)⊤π⊥

1
v

= ∥v∥
(
0
z

)
+ ∥v∥−1V(0)⊤v = ∥v∥

(
0
z

)
+ ∥v∥−1

(
Xn+1 − (n+ 1)−1

∑n+1
i=1 Xi

−(n+ 1)−1
∑n

i=1Ri

)
= ∥v∥

[(
0
z

)
+ ∥v∥−2

(
Xn+1 − (n+ 1)−1

∑n+1
i=1 Xi

−(n+ 1)−1
∑n

i=1Ri

)]
. (118)

Equation (99) is finally obtained by further noticing that

∥v∥−2

(
Xn+1 −

1

n+ 1

n+1∑
i=1

Xi

)
=
n+ 1

n

(
n

n+ 1
Xn+1 −

1

n+ 1

n∑
i=1

Xi

)
= Xn+1 −

1

n

n∑
i=1

Xi, (119)

and performing a similar computation for (n+ 1)−1
∑n

i=1Ri.

Proof of Lemma B.5. The expression for SX is obtained using that

X = (X1 . . . Xn0k,1)
⊤ + en+1X

⊤
n+1.

Hence we can obtain an expression for SX similar to equation (31) by performing the three substitutions

V←→ X, L←→ Ik, z ←→ Xn+1. (120)

With the substitution (120), the vector rn(z) in Lemma B.4 is replaced with

rn = ∥v∥(Xn+1 −Xn) = ∥v∥Xc
n+1.

Next, Bn is replaced with its n× k left sub-block which we denote by BX
n , which verifies

(BX
n )ij = (Xi)j −

1

n

n∑
k=1

(Xk)j , 1 ≤ i ≤ n, 1 ≤ j ≤ k.

The matrix Σ̂n,λ is next replaced with its upper k × k sub-block Σ̂11
n,λ, since

Σ̂11
n,λ =

1

n
(BX

n )⊤BX
n + λIk.

Next, dn(z) is replaced with

dXn =
1

n
r⊤n (Σ̂

11
n,λ)

−1rn =
∥v∥2
n

(Xc
n+1)

⊤(Σ̂11
n,λ)

−1Xc
n+1 =

1

n+ 1
(Xc

n+1)
⊤(Σ̂11

n,λ)
−1Xc

n+1.
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The vector bn(z) is replaced with

bnX =
1

n

(
BX

n (Σ̂11
n,λ)

−1rn
0

)
− w =

∥v∥
n

(
BX

n (Σ̂11
n,λ)

−1Xc
n+1

0

)
− w.

Finally, the matrix Pn,λ is replaced with

PXX
n,λ := BX

n

(
(BX

n )⊤BX
n + nλIk

)−1

(BX
n )⊤ =

1

n
BX

n (Σ̂11
n,λ)

−1(BX
n )⊤.

This finishes the proof.

Proof of Lemma 3.2. First, observe from Lemma B.3 that

1

n
Sn+1(z) =

n

n+ 1

(
1− 1

1 + dn(z)

)
. (121)

Now, recall that the standard conformal region Cnα corresponding to our score is given by

Cnα = {z ∈ Rℓ : Sn+1(z) ≤ S(nα)(z)}, (122)

where S(nα)(z) is the order statistic of order nα of the n-tuple (S1(z), . . . , Sn(z)). Next, denote C(nα) the order

statistic of the n-tuple ((Cn)11, . . . , (Cn)nn). Observe that, by definition, at least 100× (1−α)n+1
n % values of this

tuple are less than or equal to C(nα); but for each of such values (Cn)ii and for all z, we have Si(z) ≤ n(Cn)ii
(equation (31)). Hence, at least 100×(1−α)n+1

n % values of (S1(z), . . . , Sn(z)) are less or equal than nC(nα). Thus,
S(nα)(z) ≤ nC(nα), and

Cnα ⊂ {z ∈ Rℓ : Sn+1(z) ≤ nC(nα)}. (123)

To finish, recall that (Cn)ii = pi,n + 1/n(n+ 1): in particular, nC(nα) = qn,α + 1/(n+ 1). This shows that the set

on the right hand side of equation (123) is C̃nα.

Proof of Proposition 3.3. We start by rewriting the equation defining C̃nα. Starting from equations (121) and (123),

z ∈ C̃nα ⇐⇒ −
(

n2

n+ 1

)
1

1 + dn(z)
≤ qn,α +

1

n+ 1
− n2

n+ 1
= qn,α − (n− 1). (124)

From the equation above, if qn,α ≥ n− 1, then C̃nα = Rℓ. Assume now that qn,α < n− 1, then

z ∈ C̃nα ⇐⇒ 1 + dn(z) ≤
(

n2

n+ 1

)
1

n− 1− qn,α
⇐⇒ dn(z) ≤

qn,α + 1
n+1

n− 1− qn,α
. (125)

Now, recall from Lemma B.4 that dn(z) = n−1rn(z)
⊤Σ̂−1

n,λrn(z). Following equation (99) and the notation Xc
n+1 :=

Xn+1 −Xn, we set zc := z −Rn, so that

rn(z) = ∥v∥
(
Xc

n+1

zc

)
. (126)

Using that ∥v∥2 = n/(n+ 1) and equation (90), dn(z) is rewritten as

(n+ 1)dn(z) =
n+ 1

n
rn(z)

⊤Σ̂−1
n,λrn(z) =

n+ 1

n
∥v∥2

(
Xc

n+1

zc

)⊤

Σ̂−1
n,λ

(
Xc

n+1

zc

)
=

(
Xc

n+1

zc

)⊤

Σ̂−1
n,λ

(
Xc

n+1

zc

)
(127)

= (zc − z0)⊤A−1
n (zc − z0) + (Xc

n+1)
⊤(Σ̂11

n,λ)
−1Xc

n+1, (128)

with An = Σ̂n,λ/Σ̂
11
n,λ and z0 = Σ̂21

n (Σ̂11
n,λ)

−1Xc
n+1. Going back to equation (125), the final equation of C̃nα is

obtained by setting Zn
0 := z0 +Rn, and writing

z ∈ C̃nα ⇐⇒ (z − Zn
0 )

⊤A−1
n (z − zn0 ) ≤ (n+ 1)

qn,α + 1/(n+ 1)

n− 1− qn,α
− (Xc

n+1)
⊤(Σ̂11

n,λ)
−1Xc

n+1.
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The quantile term is simplified as

(n+ 1)
qn,α + 1/(n+ 1)

n− 1− qn,α
=

(n+ 1)qn,α + 1 + n− n
n− 1− qn,α

=
n(qn,α + 1)

n− 1− qn,α
− 1 =

qn,α + 1

1− (qn,α + 1)/n
− 1, (129)

which finishes to show that C̃n
α = Enα .

Proof of Proposition 3.4. The core idea for this result is the observation that for all z ∈ K,

qn,α − sup
z∈K

max
1≤i≤n

nbni (z)
2 ≤ S(nα)(z)− 1/(n+ 1) ≤ qn,α, (130)

and the fact that under our moment assumptions,

bn(K) := sup
z∈K

max
1≤i≤n

nbni (z)
2 P−−−−→

n→∞
0. (131)

Let us prove the equation above. For this, denote Qn(z) :=
(
BnΣ̂

−1
n,λrn(z)

)
1
= (V c

1 )
⊤Σ̂−1

n,λrn(z), where V
c
1 =

V1 − n−1
∑n

i=1 Vi and rn(z) is given in equation (99). Next, following equation (98), write that for all z ∈ Rℓ,

bn1 (z) =
Qn(z)

n
− w1 =

Qn(z)

n
− 1√

n(n+ 1)
,

(
nbn1 (z)

2
)q

=
(√
nbn1 (z)

)2q
=

(
Qn(z)√

n
− 1√

n+ 1

)2q

≲
Qn(z)

2q

nq
+

1

nq
. (132)

Above, we used that |a + b|2q ≤ 2q−1(|a|2q + |b|2q). Observe now that almost surely, because of the continuity of
maps of the form z 7→ Az + b,

bn(K) = sup
z∈K

max
1≤i≤n

nbni (z)
2 = sup

z∈K∩Qℓ

max
1≤i≤n

nbni (z)
2. (133)

Hence, bn(K) is a well-defined random variable (we apply the same reasoning to supz∈K |Qn(z)|). Next (explanation
below),

E[bn(K)]q = E
[
sup
z∈K

max
1≤i≤n

nbni (z)
2
]q
≤ E

[
sup
z∈K

max
1≤i≤n

(
nbni (z)

2
)q] ≤ E

[
sup
z∈K

n∑
i=1

(
nbni (z)

2
)q]

≤ E
[ n∑

i=1

sup
z∈K

(
nbni (z)

2
)q]

= nE
[
sup
z∈K

(
nbn1 (z)

2
)q]

≲
1

nq−1
E
[
sup
z∈K
|Qn(z)|2q

]
+

1

nq−1
. (134)

We used Jensen’s inequality in the first inequality, and equation (132) in equation (134). We now prove that the
assumption yields that supn E[supz∈K |Qn(z)|2q] < +∞. For this, use equation (99) to decompose rn(z) as

rn(z) = ∥v∥(Lz + vn), vn =

(
Xn+1

0

)
− 1

n

n∑
i=1

Vi. (135)

(Be wary that vn above has no link with v.) Next (explanation below),

|Qn(z)|2 =
(
(V c

1 )
⊤Σ̂−1

n,λrn(z)
)2
≤ (V c

1 )
⊤Σ̂−1

n,λV
c
1 × rn(z)⊤Σ̂−1

n,λrn(z) (136)

≤ λ−2∥V c
1 ∥2∥rn(z)∥2 ≲ ∥V c

1 ∥2(∥z∥2 + ∥vn∥2), (137)

sup
z∈K
|Qn(z)|2 ≲ ∥V c

1 ∥2
(
sup
z∈K
∥z∥2 + ∥vn∥2

)
. (138)

Above, we applied the Cauchy-Schwarz inequality for the inner product (u, v) 7→ u⊤Av where A is symmetric

PSD in equation (136). In equation (137), we used that Σ̂−1
n,λ ≼ λ−1I, ∥v∥ ≤ 1 and ∥rn(z)∥2 ≤ 2(∥z∥2 + ∥vn∥2),
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the latter inequality being easily deduced from equation (135). Applying the Cauchy-Schwarz inequality for the
expectation and the fact that |a+ b|2q ≲ |a|2q + |b|2q,

E
[
sup
z∈K
|Qn(z)|2q

]
≲ E[∥V c

1 ∥4q]1/2E
[(

sup
z∈K
∥z∥2 + ∥vn∥2

)2q]1/2
≲ E[∥V c

1 ∥4q]1/2
(
sup
z∈K
∥z∥4q + E

[
∥vn∥4q

])1/2

. (139)

Similarly, from the triangle inequality and the convexity of (·)4q, the right-hand side of equation (139) is bounded
as

E[∥V c
1 ∥4q] ≲ E[∥V1∥4q] + E

[∥∥∥ 1
n

n∑
i=1

Vi

∥∥∥4q] ≤ 2E[∥V1∥4q],

E[∥vn∥4q] ≲ E[∥Xn+1∥4q] + E
[∥∥∥ 1
n

n∑
i=1

Vi

∥∥∥4q] ≤ 2E[∥V1∥4q].

Hence, from the assumption, supn E
[
supz∈K |Qn(z)|2q

]
< +∞ and from equation (134), bn(K) → 0 in L1(P).

Thus,

bn(K)
P−−−−→

n→∞
0. (140)

We now prove equation (35). For this, we introduce the increasing function fn and the nonnegative random variable
Tn, such that ρn,α = fn(qn,α)−Tn, following equation (27). We also denote qn,α := qn,α− bn(K) (qn,α ≤ qn,α) and
ρn,α := fn(qn,α)− Tn (ρn,α ≤ ρn,α). Finally we define Enα as the following ellipsoid,

Enα := {z ∈ Rℓ : (z − Zn
0 )

⊤A−1
n (z − Zn

0 ) ≤ (ρn,α)+}. (141)

By copying the proof of Proposition 3.3, Enα is also the set defined by {z ∈ Rℓ : Sn+1(z) ≤ qn,α + (n+ 1)−1}. For
all z ∈ K, the inequality qn,α + (n+ 1)−1 ≤ S(nα)(z) ≤ qn,α + (n+ 1)−1 then yields that

(Enα ∩K) ⊂ (Cnα ∩K) ⊂ (Enα ∩K). (142)

We now study the associated volumes. First, given s ≥ 1, recall that from the mean value theorem, |xs − ys| ≤
smax(|x|, |y|)s−1|x− y|, x, y ≥ 0, and observe that, because fn is increasing and, for x, t ≥ 0, (x− t)+ ≤ x,

max((ρn,α)+, (ρn,α)+)
s−1 ≤ max(fn(qn,α), fn(qn,α))

s−1 = fn(qn,α)
s−1. (143)

If ℓ ≥ 2, this fact and equation (142) together imply that

0 ≤ Vol
(
(Enα \ Cnα) ∩K

)
≤ Vol

(
(Enα \ E

n

α) ∩K
)
≤ Vol(Enα \ E

n

α) = Vol(Enα)−Vol(Enα)

≤ det(An)
1/2((ρn,α)

ℓ/2
+ − (ρn,α)

ℓ/2
+ ) ≤ det(An)

1/2 ℓ

2
fn(qn,α)

ℓ/2−1|(ρn,α)+ − (ρn,α)+|

≤ det(An)
1/2 ℓ

2
fn(qn,α)

ℓ/2−1|ρn,α − ρn,α| (144)

≤ det(An)
1/2 ℓ

2
fn(qn,α)

ℓ/2−1|fn(qn,α)− fn(qn,α)|. (145)

(We used that (·)+ is 1-Lipschitz in equation (144).) But it is clear, from the definition of fn as well as Lemma
B.6, that fn(qn,α) −→ qE1−α in probability, while Lemma B.6 and equation (140) imply that fn(qn,α) −→ qE1−α in
probability. Combined with equation (51) and the continuity of det(·), equation (145) implies the desired equation
(35). If ℓ = 1, the same proof can be adapted using this time that |x1/2 − y1/2| ≤ |x− y|1/2, x, y ≥ 0.

Proof of Lemma 3.5. From equation (32) and observing that 0 ≼ Pn,λ ≼ Pn,0, we may first write that

Tr(Pn,λ) ≤ Tr(Pn,0) ≤ p. (146)
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Now, denote p(i) the i
th order statistic of (p1,n, . . . , pn,n), p(1) ≤ · · · ≤ p(n). Then

Tr(Pn,λ) =

n∑
i=1

pi,n =

n∑
i=1

p(i) ≥
n∑

i=nα

p(i) ≥ p(nα)(n+ 1− nα) =
qn,α
n

(n+ 1− nα). (147)

Moreover,

n+ 1− nα = n+ 1− ⌈(1− α)(n+ 1)⌉ = n+ 1 + ⌊−(1− α)(n+ 1)⌋
= ⌊n+ 1− (1− α)(n+ 1)⌋ = ⌊α(n+ 1)⌋. (148)

Thus, combining equations (146), (147) and (148),

qn,α ≤
np

n+ 1− nα
=

np

⌊α(n+ 1)⌋ . (149)

Hence, a sufficient condition for qn,α < n− 1 is np/⌊α(n+ 1)⌋ < n− 1, that is,

np

n− 1
< ⌊α(n+ 1)⌋. (150)

But this is equivalent to ⌊np/(n− 1)⌋+ 1 ≤ ⌊α(n+ 1)⌋, which is also equivalent to⌊
np

n− 1

⌋
+ 1 = p+

⌊
p

n− 1

⌋
+ 1 ≤ α(n+ 1). (151)

Thus, if p < n− 1, then ⌊p/(n− 1)⌋ = 0 and we obtain the sufficient condition α ≥ (p+ 1)/(n+ 1).

Proof of Theorem 3.6. The computations follow those of Proposition 3.3. Using Lemmas B.2 and B.3 on S(z) and
SX , we rewrite the score matrix as

1

n
S′(z) =

(
Pn,λ 0n,1

01,n 0

)
+ ww⊤ − bn(z)bn(z)⊤

1 + dn(z)
−
((

PXX
n,λ 0n,1

01,n 0

)
+ ww⊤ − bnX(bnX)⊤

1 + dXn

)

=

(
Pn,λ −PXX

n,λ 0n,1

01,n 0

)
− bn(z)bn(z)⊤

1 + dn(z)
+
bnX(bnX)⊤

1 + dXn
. (152)

In particular,

∀i ∈ {1, . . . , n}, S′
i(z) = n(Pn,λ −PXX

n,λ )ii + n
(bnX)2i
1 + dXn

− n bn(z)2i
1 + dn(z)

, (153)

S′
n+1(z) =

n2

n+ 1

(
1

1 + dXn
− 1

1 + dn(z)

)
. (154)

Equation (154) is a consequence of Lemma B.3 : bn(z)2n+1 = (bnX)2n+1 = n/(n + 1). Now, since dn(z) ≥ 0, the
following uniform bound in z holds for all i ∈ {1, . . . , n} :

S′
i(z) ≤ n(Pn,λ −PXX

n,λ )ii + n
(bnX)2i
1 + dXn

= np′i,n. (155)

Using the same arguments as in Lemma 3.2, we have that S′
(nα)(z) ≤ np′(nα) = q′n,α (see equation (44) for q′n,α),

hence

{z : S′
n+1(z) ≤ S′

(nα)(z)} ⊂ {z : S′
n+1(z) ≤ q′n,α} =: Fn

α . (156)

We now show that the set Fn
α above corresponds to that of Theorem 3.6. First, observe from equation (90) and

the definitions of dn(z) and d
X
n that

dn(z) =
1

n+ 1
(z − Zn

0 )
⊤A−1

n (z − Zn
0 ) + dXn ≥ 0.
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Since dn(z) is quadratic in z with minz dn(z) = dn(Z
n
0 ) = dXn , equation (154) implies that

max
z∈Rℓ

S′
n+1(z) =

(
n2

n+ 1

)
1

1 + dXn
=

n

tn
.

Hence, from the definition of Fn
α (equation (156)), Fn

α = Rℓ if and only if n/tn ≤ q′n,α, which settles the case where

Fn
α = Rℓ. Assume now that n > q′n,αtn. Then,

z ∈ Fn
α ⇐⇒

n2

n+ 1

(
1

1 + dXn
− 1

1 + dn(z)

)
≤ q′n,α ⇐⇒

1

1 + dn(z)
≥ 1

1 + dXn
− n+ 1

n2
q′n,α

⇐⇒ 1 + dn(z) ≤
1

1
1+dX

n
− n+1

n2 q′n,α
=

1 + dXn
1− n+1

n2 (1 + dXn )q′n,α
=

1 + dXn
1− tnq′n,α/n

⇐⇒ (n+ 1)dn(z) ≤ (n+ 1)

(
1 + dXn

1− tnq′n,α/n
− 1

)
⇐⇒ (zc − z0)⊤A−1

n (zc − z0) ≤ (n+ 1)

(
1 + dXn

1− tnq′n,α/n
− 1

)
− (n+ 1)dXn =: ρ′n,α.

Moreover, the right-hand side ρ′n,α above can be rewritten as

ρ′n,α = (n+ 1)

(
1 + dXn

1− tnq′n,α/n
− 1

)
− (n+ 1)dXn = (n+ 1)

(
1 + dXn

1− tnq′n,α/n
− 1− dXn

)
= (n+ 1)(1 + dXn )

(
1

1− tnq′n,α/n
− 1

)
= (n+ 1)(1 + dXn )

tnq
′
n,α/n

1− tnq′n,α/n
= t2n

q′n,α
1− tnq′n,α/n

,

which finishes the proof.

Proof of Proposition 3.7. We first prove that S′
i(z) ≥ 0 for all 1 ≤ i ≤ n+1. We first introduce the matrices F and

G(z) such that W(z) = π⊥
1
(X R(z)) = (π⊥

1
X π⊥

1
R(z)) =: (F G(z)) and Σ̂λ in equation (10) as

Σ̂λ =
1

n
W(z)⊤W(z) + λIp =

(
Σ̂11

λ Σ̂12

Σ̂21 Σ̂22
λ

)
, with S(z) = (F G(z)) Σ̂−1

λ

(
F⊤

G(z)

)
.

Generalizing equation (90) to matrices (using the block inversion lemma B.1) and observing that SX = F(Σ̂11
λ )−1F⊤,

S(z) = F(Σ̂11
λ )−1F⊤ + (G(z)− Σ̂21(Σ̂11

λ )−1F)(Σ̂λ/Σ̂
11
λ )−1(G(z)− (Σ̂11

λ )−1F)⊤,

S(z)− SX = (G(z)− Σ̂21(Σ̂11
λ )−1X)(Σ̂λ/Σ̂

11
λ )−1(G(z)− (Σ̂11

λ )−1X)⊤ ≽ 0.

Hence, for all i ∈ {1, . . . , n+ 1},

S′
i(z) = (S(z)− SX)ii = e⊤i (S(z)− SX)ei ≥ 0.

In particular, for all i ∈ {1, . . . , n},

np′i,n ≥ S′
i(z) ≥ 0,

and as a consequence, q′n,α ≥ 0. From the definition of ρ′n,α, we deduce that ρ′n,α ≥ 0. Finally, since dn(Z
n
0 ) = dXn ,

we have from equation (154) that

S′
n+1(Z

n
0 ) = 0 ≤ q′n,α,

and thus, from the definition of Fn
α (equation (156)), Zn

0 ∈ Fn
α . We now study the quantity P(Fn

α = Rℓ). We first
write

P(Fn
α = Rℓ) = P

(
n

n+ 1

1

1 + dXn
≤ q′n,α

n

)
.
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Set p′′i,n := (Pn,λ −PXX
n,λ )ii for i ∈ {1, . . . , n}. Because dXn ≥ 0, we have the bound

p′i,n = (Pn,λ −PXX
n,λ )ii +

(bnX)2i
1 + dXn

≤ p′′i,n +

n∑
j=1

(bnX)2j .

Hence,

q′n,α ≤ q′′n,α + n

n∑
j=1

(bnX)2j , (157)

where q′′n,α is the order statistic of order nα of the n-tuple (np′′1,n, . . . , np
′′
n,n). Using equation (157),

P(Fn
α = Rℓ) ≤ P

(
n

n+ 1

1

1 + dXn
≤ q′′n,α

n
+

n∑
j=1

(bnX)2j

)
= P

(
q′′n,α
n

+

n∑
j=1

(bnX)2j +

(
1− n

n+ 1

1

1 + dXn

)
≥ 1

)
.

Now, given X,Y, Z three random variables, we have the event inclusion

{X + Y + Z ≥ 1} ⊂ {X ≥ 1/3} ∪ {Y ≥ 1/3} ∪ {Z ≥ 1/3}.

(If both X < 1/3 and Y < 1/3, then Z ≥ 1−X − Y ≥ 1/3.) In particular, using a union bound,

P(Fn
α = Rℓ) ≤ P

(
q′′n,α
n
≥ 1

3

)
+ P

( n∑
j=1

(bnX)2j ≥
1

3

)
+ P

(
1− n

n+ 1

1

1 + dXn
≥ 1

3

)
. (158)

We now show that the three random variables in the equation above converge to 0 in probability, which will imply
that P(Fn

α = Rℓ) → 0 when n → ∞. First, from Lemma B.6, we have that q′′n,α converges a.s. to a constant, so
a.s., q′′n,α/n→ 0 when n→∞, in particular

P
(
q′′n,α
n
≥ 1

3

)
−−−−→
n→∞

0. (159)

Next, denoting λmin,n = min Spec(Σ11
n,λ=0), we have

0 ≤ dXn =
1

n+ 1
E[Xc

n+1(Σ
11
n,λ)

−1Xc
n+1 ≤

1

n+ 1

1

λ+ λmin,n
∥Xn+1 −Xn∥2

≤ 2

(n+ 1)(λ+ λmin,n)
(∥Xn+1∥2 + ∥Xn∥2) =

2∥Xn+1∥2
(n+ 1)(λ+ λmin,n)

+
2∥Xn∥2

(n+ 1)(λ+ λmin,n)
. (160)

From the SLLN and the continuity of the eigenvalues of self adjoint matrices ([20], Problem 1 p. 198), we have a.s.,
λmin,n → λmin where λmin,n = min Spec(Σ11).Thus the second term in equation converges a.s. to 0. Moreover,

Xn+1
d
= X1. Thus, from Slutsky’s lemma and the continuous mapping theorem,

2∥Xn+1∥2
(n+ 1)(λ+ λmin,n)

d−−−−→
n→∞

0× ∥X1∥2 = 0.

Because the limit above is constant, the convergence above also holds in probability. Thus, dXn → 0 in probability,
when n→∞. Hence, assuming n ≥ 3,

P
(
1− n

n+ 1

1

1 + dXn
≥ 1

3

)
= P

(
dXn ≥

3

2

n

n+ 1
− 1

)
≤ P

(
dXn ≥

9

8
− 1

)
= P

(
dXn ≥

1

8

)
−−−−→
n→∞

0. (161)

Finally, using that (bnX)2n+1 = w2
n+1 = n/(n+ 1) (see Lemma B.5),

∥bnX∥2 = (bnX)⊤bnX = (bnX)2n+1 +

n∑
j=1

(bnX)2j =
n

n+ 1
+

n∑
j=1

(bnX)2j . (162)
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Now, denote 1n the vector of ones of Rn, and observe that BX
n = π⊥

1n
M where M ∈Mn,k is given by Mij = (Xi)j .

Observe further that w = c× (−1 . . .− 1 n)⊤ = c× (−1⊤
n n)⊤, where c = (n+ 1)−1∥v∥−1. Using that π⊥

1n
1n = 0

and that the matrix π⊥
1n

is symmetric,

w⊤
(
BX

n (Σ11
n,λ)

−1Xc
n+1

0

)
= −c

(
1
⊤
n π

⊥
1n

)
M(Σ11

n,λ)
−1(Xc

n+1) = 0.

Hence,

∥bnX∥2 =

(∥v∥
n

(
BX

n (Σ11
n,λ)

−1Xc
n+1

0

)
− w

)⊤(∥v∥
n

(
BX

n (Σ11
n,λ)

−1Xc
n+1

0

)
− w

)
=
∥v∥2
n

(Xc
n+1)

⊤(Σ11
n,λ)

−1 (B
X
n )⊤BX

n

n
(Σ11

n,λ)
−1Xc

n+1 + ∥w∥2

≤ ∥v∥
2

n
(Xc

n+1)
⊤(Σ11

n,λ)
−1Xc

n+1 + 1 = dXn + 1. (163)

We used that n−1(BX
n )⊤BX

n (Σ11
n,λ)

−1 ≼ Ik in equation (163). Combining equations (162) and (163),

0 ≤
n∑

j=1

(bnX)2j ≤ dXn +
1

n+ 1
, (164)

and thus
∑n

j=1(b
n
X)2j → 0 in probability, when n→∞. As a consequence,

P
( n∑

j=1

(bnX)2j ≥
1

3

)
−−−−→
n→∞

0. (165)

Combining equations (158), (159), (161) and (165), we finally obtain that

P(Fα
n = Rℓ) −−−−→

n→∞
0, (166)

which finishes the proof.

Proof of Proposition 4.1. We clearly have, from the SLLN,

Σ̂n,λ =
1

n
B⊤

nBn + λIp
a.s.−−−−→

n→∞
Σλ. (167)

In particular, since we chose λ > 0, the continuous mapping theorem implies that

An
a.s.−−−−→

n→∞
A∞. (168)

Next, the fact that qn,α → qE1−α almost surely is deferred in Lemma B.6. This fact also implies that qn,α/n
a.s.−−−−→

n→∞
0.

Thus, using Slutsky’s lemma,

ρn,α
d−−−−→

n→∞
qE1−α −X⊤

c (Σ11
λ )−1Xc = ρ∞,α. (169)

Likewise, the convergence in distribution of Zn
0 is also obtained via Slutsky’s lemma. Next, from the continuous

mapping theorem, the volume converges in distribution to the random limit volume given by

Vol(E∞α ) = vℓ det
(
(ρ∞,α)+A∞

)1/2
= vℓ

√
det(Σλ/Σ11

λ )
(
qE1−α −X⊤

c (Σ11
λ )−1Xc

)ℓ/2
+
. (170)

The limit probability in equation (55) corresponds to ρ∞,α < 0. We now show that it is ≤ α. For this, we introduce
the simplified notations

Σλ =

(
A B
B⊤ C

)
, A = Σ11

λ . (171)

35



For conciseness, denote A = V ⊤
c Σ−1

λ Vc, B = X⊤
c (Σ11

λ )−1Xc and FA, FB their CDF: we first show that A ≥ B.
From equation (90),

A = X⊤
c A−1Xc + (Rc −B⊤A−1Xc)

⊤(Σλ/A)−1(Rc −B⊤A−1Xc)

= B + (Rc −B⊤A−1Xc)
⊤(Σλ/A)−1(Rc −B⊤A−1Xc). (172)

Since (Σλ/A) ≽ 0, the equation above shows that A ≥ B and thus FA ≤ FB . Hence, denoting QA the quantile
function of A and using that QA(p) ≤ x ⇐⇒ p ≤ FA(x),

P(E∞α = ∅) = P(X⊤
c (Σ11

λ )−1Xc > qE1−α) = 1− P(X⊤
c (Σ11

λ )−1Xc ≤ qE1−α)

= 1− FB(QA(1− α)) ≤ 1− FA(QA(1− α)) ≤ α. (173)

To finish, if λ = 0, we assume that min Spec(Σ) > 0. From the continuity of the smallest eigenvalue over the set of

Hermitian matrices [20], Problem 1 p. 198, and equation (167), we deduce that almost surely, min Spec(Σ̂n) > 0
for n large enough (n depends on the sample). Thus, equation (168) also holds, from the continuity of the map
A 7→ A−1 over the set of invertible matrices of size p. Since min Spec(Σ11) ≥ min Spec(Σ) > 0 ([20], Theorem

4.3.15), the same argument shows that (Σ̂11
n )−1 → (Σ11)−1 almost surely. The rest of the proof is identical to the

case λ > 0.

Proof of Proposition 4.2. Under the assumptions, we have S := X⊤
c (Σ11)−1Xc ∼ χ2(k), V ⊤

c Σ−1Vc ∼ χ2(k+ℓ) and
qE1−α = F−1

χ2(k+ℓ)(1 − α). We begin with computing E[Vol(E∞α )q]. Denoting t = qE1−α, we have that E[Vol(E∞α )q] =

vqℓ det(Σ/Σ
11)q/2E

[
(t− S)qℓ/2+

]
. Setting Ck = 2k/2Γ(k/2), the expectation is further simplified as

E
[
(t− S)qℓ/2+

]
=

∫
R+

(t− s)qℓ/2+

sk/2−1e−s/2

Ck
ds = C−1

k tqℓ/2
∫ t

0

(1− s/t)qℓ/2+ sk/2−1e−s/2ds

= C−1
k tqℓ/2

∫ 1

0

(1− v)qℓ/2(tv)k/2−1e−tv/2tdv

= C−1
k t(k+qℓ)/2

∫ 1

0

(1− v)qℓ/2vk/2−1e−tv/2dv

= C−1
k B

(
k

2
,
qℓ

2
+ 1

)
t(k+qℓ)/2ΦBeta( k

2 ,
qℓ
2 +1)(it/2)

=
Γ(qℓ/2 + 1)

2k/2Γ((k + qℓ)/2 + 1)
t(k+qℓ)/2

1F1

(
k

2
,
k + qℓ

2
+ 1,− t

2

)
. (174)

Above, B(x, y) = Γ(x)Γ(y)/Γ(x+y) is the Euler Beta function, and Φµ(t) =
∫
eitxµ(dx) is the characteristic function

of a given measure µ. Here, we recognize the characteristic function of the Beta distribution Beta(k/2, qℓ/2 + 1)
[22], p 218. For the proof of the convergence statement, we begin with observing that ⌊α(n+ 1)⌋ > α(n+ 1)− 1.
From equation (149), when n ≥ 2(1− α)/α,

qn,α ≤
np

α(n+ 1)− 1
=

np

αn− (1− α) =
p

α− (1− α)/n ≤
p

α− (1−α)α
2(1−α)

=
2p

α
. (175)

From this we deduce that, for n large enough so that 1− (1 + 2p/α)/n > 1/2,

ρn,α =

(
n(qn,α + 1)

n− (qn,α + 1)
− 1− (Xn+1

c )⊤(Σ̂11
n,λ)

−1Xc
n+1

)
+

≤
(

n(qn,α + 1)

n− (qn,α + 1)

)
+

≤ qn,α + 1

1− (qn,α + 1)/n
≤ 1 + 2p/α

1− (1 + 2p/α)/n
≤ 2(1 + 2p/α). (176)

Hence, using that det(Σ̂n/Σ̂
11
n ) ≤ det(Σ̂22

n ), we obtain that

Vol(Enα) = vℓ det(Σ̂n/Σ̂
11
n )1/2(ρn,α)

ℓ/2
+ ≲ det(Σ̂22

n )1/2. (177)

Now, recall from [34], Theorem 3.4.8, that det(Σ̂22
n ) is equal, in distribution, to det(Σ22)U0 × . . . × Uℓ−1, where

nUi ∼ χ2(n− i) and the Ui are independent. In particular, for all q > 0 [21], p 420,

E[det(Σ̂22
n )q] = det(Σ22)q

ℓ−1∏
i=0

n−qE[(nUi)
q] = det(Σ22)q

ℓ−1∏
i=0

2qΓ(q + (n− i)/2)
nqΓ((n− i)/2) . (178)
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But, when s→ +∞ and q is fixed, Γ(s+ q)/Γ(s) ∼ sq ([1], Section 6.1.39). Applying this result to each term in the

product above, in the regime where n → +∞, we obtain that for all q > 0, supn E[det(Σ̂22
n )q] < +∞. From [47],

Example 2.21, and equation (54), all the moments of Vol(Enα) converge toward those of Vol(E∞α ). In particular, this
proves equation (61).

Proof of Proposition 4.3. The convergence of q′n,α is given by Lemma B.6, equation (105). It is also proved in

Proposition 3.7 that, if E[∥X1∥2] < +∞, then dXn → 0 in probability (see e.g. equation (161)), so that from the
definition of tn (equation (45)), tn → 1 in probability. Thus, from the definition of ρ′n,α (equation (47)), we obtain

that ρ′n,α → qF1−α in probability.

Proof of Proposition 4.4. Decompose Σ as in equation (49). As in Propositions 4.1 and 4.3, set Vc := V1 −
E[V1], Vc = (X⊤

c R
⊤
c )

⊤ and Tc = Rc −Σ21(Σ11)−1Xc. Then

Y1 − Ŷ1 ∈ F∞
α ⇐⇒ R1 ∈ F∞

α ⇐⇒ T⊤
c (Σ/Σ11)−1Tc ≤ qF1−α. (179)

Under the assumption that Vc ∼ N (0,Σ), using the bilinearity of Cov(·, ·),

Cov(Tc, X1) = Cov(Tc, Xc) = Cov(Rc, Xc)−Σ21(Σ11)−1Cov(Xc, Xc) = Σ21 −Σ21(Σ11)−1Σ11 = 0.

Because Vc is a Gaussian random vector, this implies that Tc and X1 are independent. In particular, from equation
(179) and the definition of qF1−α,

P(Y1 − Ŷ1 ∈ F∞
α |X1 = x) = P(T⊤

c A−1
∞ Tc ≤ qF1−α|X1 = x) = P(T⊤

c A−1
∞ Tc ≤ qF1−α) = 1− α,

which finishes the proof.

Proof of Proposition 4.5. Denote Rn := n−1
∑n

i=1Ri and Xn := n−1
∑n

i=1Xi, and write

E[Ỹn+1]− E[Y1] = E[Ŷn+1 − Yn+1] + E
[
Rn

]
+ E

[
Σ̂21

n (Σ̂11
n,λ)

−1(Xn+1 −Xn)
]

= −E[Rn+1] + E
[
Rn

]
+ E

[
Σ̂21

n (Σ̂11
n,λ)

−1Xn+1

]
− E

[
Σ̂21

n (Σ̂11
n,λ)

−1Xn

]
= E

[
Σ̂21

n (Σ̂11
n,λ)

−1
]
E[Xn+1]− E

[
Σ̂21

n (Σ̂11
n,λ)

−1Xn

]
(180)

= E
[
Σ̂21

n (Σ̂11
n,λ)

−1(E[X1]−Xn)
]
.

In equation (180), we used that Σ̂21
n (Σ̂11

n,λ)
−1 and Xn+1 are independent. Hence (explanation below),

∥E[Ỹn+1]− E[Y1]∥22 ≤ E
[
∥Σ̂21

n (Σ̂11
n,λ)

−1/2(Σ̂11
n,λ)

−1/2(E[X1]−Xn)∥2
]2

(181)

≤ E
[
∥Σ̂21

n (Σ̂11
n,λ)

−1/2∥Op∥(Σ̂11
n,λ)

−1/2(E[X1]−Xn)∥2
]2

(182)

≲ E
[
∥Σ̂21

n (Σ̂11
n,λ)

−1/2∥F ∥(Σ̂11
n,λ)

−1/2(E[X1]−Xn)∥2
]2

(183)

≲ E[∥Σ̂21
n (Σ̂11

n,λ)
−1/2∥2F ]× E

[
∥(Σ̂11

n,λ)
−1/2(E[X1]−Xn)∥22

]
. (184)

We used the triangle inequality in equation (181), the operator norm such that ∥Mx∥2 ≤ ∥M∥Op∥x∥2 in equation
(182), the equivalence of ∥ · ∥Op with the Frobenius norm ∥M∥F = Tr(MM⊤)1/2 in equation (183), and the

Cauchy-Schwarz inequality in equation (184). But, since Σ̂22
n,λ − Σ̂21

n (Σ̂11
n,λ)

−1Σ̂12
n = Σ̂n,λ/Σ̂

11
n,λ ≽ 0,

E[∥Σ̂21
n (Σ̂11

n,λ)
−1/2∥2F ] = E[Tr(Σ̂21

n (Σ̂11
n,λ)

−1Σ̂12
n )] ≤ E[Tr(Σ̂22

n,λ)]

≤ 1

n

n∑
i=1

E[Tr((Ri −Rn)(Ri −Rn)
T )] + λℓ

≤ E[∥R1 −Rn∥22] + λℓ =
n− 1

n
Tr(Σ22) + λℓ. (185)

Moreover, using that ∥(Σ̂11
n,λ)

−1/2∥2F = Tr((Σ̂11
n,λ)

−1) ≤ Tr(λ−1Ik) = k/λ ≲ 1 conjointly with the operator and
Frobenius norms,

E
[
∥(Σ̂11

n,λ)
−1/2(E[X1]−Xn)∥22

]
≲ E

[
∥(Σ̂11

n,λ)
−1/2∥2F ∥E[X1]−Xn∥22

]
≲ E

[
∥E[X1]−Xn∥22

]
= Tr(Σ)/n. (186)
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Equations (184), (185) and (186) then yield equation (67). We now show equation (68). Assuming that there exists

q > 1 such that E[∥V1∥4q] < +∞, we first show that the sequence ∥Ỹn+1 − Yn+1∥22 is uniformly integrable. Write

Ỹn+1 − Yn+1 = Ŷn+1 − Yn+1 +Rn + Σ̂21
n (Σ̂11

n,λ)
−1(Xn+1 −Xn)

= Rn −Rn+1 + Σ̂21
n (Σ̂11

n,λ)
−1(Xn+1 −Xn). (187)

Hence, starting from equation (187) and following the steps leading to equation (184),

∥Ỹn+1 − Yn+1∥2q2 ≲
(
∥Rn −Rn+1∥2 + ∥Σ̂21

n (Σ̂11
n,λ)

−1/2∥F ∥(Σ̂11
n,λ)

−1/2(Xn+1 −Xn)∥2
)2q

≲ ∥Rn −Rn+1∥2q2 + ∥Σ̂21
n (Σ̂11

n,λ)
−1/2∥2qF ∥(Σ̂11

n,λ)
−1/2(Xn+1 −Xn)∥2q2 . (188)

Taking the expectation and using the Cauchy-Schwarz inequality,

E[∥Ỹn+1 − Yn+1∥2q2 ] ≲ E[∥Rn −Rn+1∥2q2 ] + E[∥Σ̂21
n (Σ̂11

n,λ)
−1/2∥4qF ]1/2E[∥Xn+1 −Xn∥4q2 ]1/2.

Using the convexity of (·)2q and (·)4q, we have that E[∥Rn − Rn+1∥2q2 ] ≲ E[∥R1∥2q] and E[∥Xn+1 − Xn∥4q2 ] ≲
E[∥X1∥4q]. Likewise,

E[∥Σ̂21
n (Σ̂11

n,λ)
−1/2∥4qF ] = E[Tr(Σ̂21

n (Σ̂11
n,λ)

−1Σ̂12
n )2q] ≤ E[Tr(Σ̂22

n,λ)
2q]

≤ E
[(
ℓλ+

1

n

n∑
i=1

Tr
(
(Ri −Rn)(Ri −Rn)

⊤
))2q]

≤ E
[( 1
n

n∑
i=1

(∥Ri −Rn∥2 + ℓλ)
)2q]

≤ E
[
1

n

n∑
i=1

(∥Ri −Rn∥2 + ℓλ)2q
]

≤ E[(∥R1 −Rn∥2 + ℓλ)2q] ≲ E[∥R1∥4q] + λ2q. (189)

Hence, supn E[∥Ỹn+1−Yn+1∥2q2 ] < +∞. Setting S := Σ21(Σ11
λ )−1X1−R1 and observing from Proposition 4.1 that

Ỹn+1 − Yn+1
d−−−−−→

n→+∞
S − E[S], (190)

we may use [47], Example 2.21, so that ∥Ỹn+1 − Yn+1∥22 is uniformly integrable, with

E[∥Ỹn+1 − Yn+1∥22] −−−−→
n→∞

E[∥S − E[S]∥2] = Tr
(
Cov(S)

)
. (191)

Finally,

Cov(S) = Σ22 +Σ21(Σ11
λ )−1Σ11(Σ11

λ )−1Σ12 − 2Σ21(Σ11
λ )−1Σ12

= Σ22 + λIℓ − λIℓ +Σ21(Σ11
λ )−1(Σ11 + λIk − λIk)(Σ11

λ )−1Σ12

− 2Σ21(Σ11
λ )−1Σ12

= Σ22
λ −Σ21(Σ11

λ )−1Σ12 − λ(Iℓ +Σ21(Σ11
λ )−2Σ12)

= Σλ/Σ
11
λ − λ(Iℓ +Σ21(Σ11

λ )−2Σ12) = Mλ. (192)

This finishes to prove that E[∥Ỹn+1 − Yn+1∥22] −−→ Tr(Mλ). Using the same previous arguments for extra-diagonal

entries of Cov(Ỹn+1 − Yn+1) and equation (67), we obtain equation (68).

Proof of Proposition 4.6. For equation (69), we follow the proof of Théorème 8.9, p. 90 of the lecture notes [4]. We
denote F the CDF of ∥R1∥2 and Fn the empirical CDF obtained from the iid sample (∥R1∥, . . . , ∥Rn∥2). We can
write

|F (βn,α)− F (q1−α(∥R1∥2))| ≤ |F (βn,α)− Fn(βn,α)|+ |Fn(βn,α)− F (q1−α(∥R1∥2))|

≤ ∥F − Fn∥∞ +

∣∣∣∣⌈(1− α)(n+ 1)⌉
n

− (1− α)
∣∣∣∣→ 0 a.s., (193)

where we used the Glivenko-Cantelli theorem in equation (193). Hence, a.s., F (q′n,α) converges to F (q1−α(∥R1∥2)) =
1−α. We obtain equation (69) from the continuity of the quantile function of ∥R1∥2 on a neighbourhood of 1−α.
We then deduce equation (70) from the continuous mapping theorem, as Vol(Bnα) = vℓ(βn,α)

ℓ/2.
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Proof of Proposition 4.7. Let B be the centered ball of Rℓ, of radius t. Let A ⊂ Rℓ be a measurable set such that
λ(A) = λ(B), where λ stands for the Lebesgue measure of Rℓ. Since A = (A ∩ B) ∪ (A ∩ Bc) where the union is
disjoint (and symmetrically for B), we also have that

λ(A ∩Bc) = λ(B ∩Ac). (194)

Now, let (δ1, . . . , δℓ) ∈ Rℓ
+ be such that δ1 . . . δℓ = 1, and s ∈ Rℓ. Observe that

∑ℓ
i=1 δi(zi+si)

2 = (z+s)⊤Dδ(z+s)
where Dδ is the diagonal matrix such that (Dδ)i = δi. The set Eδ := {z ∈ Rℓ : (z + s)⊤Dδ(z + s) ≤ t} is an
ellipsoid with volume λ(Eδ) = vℓ det(Dδ)

−1/2tℓ = vℓt
ℓ = λ(B). Hence,

P
( ℓ∑

i=1

T 2
i ≤ t

)
− P

( ℓ∑
i=1

δi(Ti + si)
2 ≤ t

)
=

∫
Rℓ

1z⊤z≤tg(∥z∥2)dz

−
∫
Rℓ

1(z+s)⊤Dδ(z+s)≤tg(∥z∥2)dz

=

∫
B

g(∥z∥2)dz −
∫
Eδ

g(∥z∥2)dz

=

∫
B∩Ec

δ

g(∥z∥2)dz −
∫
Eδ∩Bc

g(∥z∥2)dz. (195)

But since g is decreasing, B is a superlevel set of g: g(∥z∥2) ≥ g(t2) for z ∈ B and g(∥z∥2) ≤ g(t2) for z ∈ Bc.
Thus, from equations (194) and (195),

P
( ℓ∑

i=1

T 2
i ≤ t

)
− P

( ℓ∑
i=1

δi(Ti + si)
2 ≤ t

)
≥ g(t)

(
λ(B ∩ Ec

δ)− λ(Eδ ∩Bc)
)
= 0. (196)

Hence, for all t > 0, P(
∑ℓ

i=1 δi(Ti + si)
2 ≤ t) ≤ P(

∑ℓ
i=1 T

2
i ≤ t). Since f ≤ g implies g−1 ≤ f−1, we obtain that

for all α ∈ (0, 1),

q1−α

( ℓ∑
i=1

T 2
i

)
≤ q1−α

( ℓ∑
i=1

δi(Ti + si)
2

)
. (197)

This finishes the proof.

Proof of Lemma 4.8. Given a random vector X, we denote ΦX(t) := E[exp(it⊤X)]. Given that the distribution
of T is spherical, introduce ψ the function such that ΦT (t) = ψ(∥t∥2), t ∈ Rp. Since V1 = µ + Σ1/2T , we have
ΦV1

(t) = exp(it⊤µ)ψ(t⊤Σt) [39], p 34. We also denote T ′ := (T1, . . . , Tℓ)
⊤ ∈ Rℓ. Decomposing µ = (µ⊤

X µ⊤
R)

⊤

where µR ∈ Rℓ, we have for t′ ∈ Rℓ [39], p 34-35,

ΦR1
(t′) = ΦV1

((0, t′)) = ei(t
′)⊤µRψ((t′)⊤Σ22t′), (198)

ΦT ′(t′) = ΦT ((0, t
′)) = ψ(∥t′∥2). (199)

Hence, R1 = µR+(Σ22)1/2T̃ for some T̃ with a spherical distribution. It is also clear from the equations above that

ΦT̃ (t
′) = ψ(∥t′∥2) = ΦT ′(t′), so that T̃ and T ′ are equal in distribution. Write Σ22 = PDP⊤ an eigendecomposition

ofΣ22, where P is orthogonal andD is diagonal, Dii = λi. Then, setting s := D−1/2P⊤µ and using that P⊤T ′ d
= T ′

from the sphericity of T ′,

∥R1∥2 = ∥µR +PD1/2P⊤T̃∥2 d
= ∥µR +PD1/2P⊤T ′∥2 d

= ∥µR +PD1/2T ′∥2

= ∥D1/2(s+ T ′)∥2 =

ℓ∑
i=1

λi(Ti + si)
2. (200)

This finishes the proof.
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Proof of Proposition 4.9. Using Lemma 4.8, q1−α(∥R1∥2) = q1−α(
∑ℓ

i=1 λi(Ti+si)
2) where the λi are the eigenvalues

of Σ22 and from Proposition 4.6,(
Vol(E∞α )

Vol(B∞α )

)2/ℓ

≤ det(Σ/Σ11)1/ℓ
q1−α(

∑k+ℓ
i=1 T

2
i )

q1−α(
∑ℓ

i=1 λi(Ti + si)2)
(201)

≤ cα(k, ℓ)
(
det(Σ/Σ11)

det(Σ22)

)1/ℓ
q1−α(

∑ℓ
i=1 T

2
i )

det(Σ22)−1/ℓq1−α(
∑ℓ

i=1 λi(Ti + si)2)

≤ cα(k, ℓ)
(
det(Σ/Σ11)

det(Σ22)

)1/ℓ
q1−α(

∑ℓ
i=1 T

2
i )

q1−α(
∑ℓ

i=1 δi(Ti + si)2)
≤ cα(k, ℓ)

(
det(Σ/Σ11)

det(Σ22)

)1/ℓ

, (202)

where δi = λi/(λ1 . . . λℓ)
1/ℓ and where we applied Proposition 4.7 in the last inequality. We have thus proved

Proposition 4.9 when λ = 0. We now assume that λ > 0. For this, we follow the steps that lead to equation (202),
so that

Vol(E∞α,λ)2/ℓ = v
2/ℓ
ℓ det(Σλ/Σ

11
λ )1/ℓ(q1−α(V

⊤
c Σ−1

λ Vc)−X⊤
c (Σ11

λ )−1Xc)+

≤ v2/ℓℓ det(Σλ/Σ
11
λ )1/ℓq1−α(V

⊤
c Σ−1

λ Vc)

≤ v2/ℓℓ det(Σλ/Σ
11
λ )1/ℓq1−α(V

⊤
c Σ−1Vc)

≤ v2/ℓℓ det(Σλ/Σ
11
λ )1/ℓq1−α

( k+ℓ∑
i=1

T 2
i

)
≤ det(Σλ/Σ

11
λ )1/ℓcα(k, ℓ)Vol(B∞α )2/ℓ. (203)

In view of equation (203), we show that the map λ 7→ det(Σλ/Σ
11
λ ) is strictly increasing. For this, denote 0 ≤ λ1 ≤

· · · ≤ λp the eigenvalues of Σ, and 0 ≤ λ11 ≤ · · · ≤ λ1k the eigenvalues of Σ11. Then, setting fi(λ) := (λi+λ)/(λ
1
i +λ)

for i = 1, . . . , k,

det(Σλ/Σ
11
λ ) =

det(Σλ)

det(Σ11
λ )

=

k∏
i=1

(
λi + λ

λ1i + λ

) k+ℓ∏
i=k+1

(λ+ λi) =

k∏
i=1

fi(λ)

k+ℓ∏
i=k+1

(λ+ λi). (204)

But from the interlacing theorem ([20], Theorem 4.3.15), for all i ∈ {1, . . . , k}, λi ≤ λ1i . Hence, f ′i(λ) = (λ1i −
λi)/(λ

1
i + λ)2 ≥ 0, and from equation (204), the map λ 7→ det(Σλ/Σ

11
λ ) is strictly increasing (and goes to +∞

when λ→ +∞). As a consequence, if the inequality in equation (77) is strict, then there exists an unique λ0 > 0
verifying

det(Σλ0
)/det(Σ11

λ0
) = det(Σλ0

/Σ11
λ0
) = cα(k, ℓ)

−ℓ det(Σ22), (205)

which corresponds to the announced criterion.

Proof of Proposition 4.10. We use notations exclusive to this proof. Let T = (X⊤ Y ⊤)⊤ ∈ Rp have a spherical
distribution, with density

fT (x, y) = g(∥x∥2 + ∥y∥2), x ∈ Rk, y ∈ Rℓ.

Then Y has a spherical distribution with density

fY (y) =

∫
Rk

g(∥x∥2 + ∥y∥2)dx =: gY (∥y∥2). (206)

Define now U ∈ Rk, V ∈ Rℓ and Z ∈ Rℓ by(
U
V

)
=

(
µu

µv

)
+Σ1/2T, Z := (Σ/Σ11)−1/2(V − µv −Σ21(Σ11)−1(U − µu)).

We now show that Z
d
= Y . For this, observe first that the density of (U⊤ V ⊤)⊤ is

f(U,V )(u, v) = det(Σ)−1/2g

((
u− µu

v − µv

)⊤

Σ−1

(
u− µu

v − µv

))
.
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Setting w = v − µv −Σ21(Σ11)−1(u− µu), we have from equation (90) that(
u− µu

v − µv

)⊤

Σ−1

(
u− µu

v − µv

)
= (u− µu)

⊤(Σ11)−1(u− µu) + w⊤(Σ/Σ11)−1w. (207)

Taking the definition of w above as a function of u and v, we have, for any bounded measurable function h
(explanation below),

E[h(Z)] =
∫
Rk

∫
Rℓ

h((Σ/Σ11)−1/2w)f(U,V )(u, v)dvdu (208)

= det(Σ)−1/2

∫
Rk

∫
Rℓ

h((Σ/Σ11)−1/2w)g((u− µu)
⊤(Σ11)−1(u− µu) + w⊤(Σ/Σ11)−1w)dvdu (209)

= det(Σ)−1/2 det(Σ/Σ11)1/2
∫
Rk

∫
Rℓ

h(z)g((u− µu)
⊤(Σ11)−1(u− µu) + ∥z∥2)dzdu (210)

=

∫
Rℓ

h(z)

(∫
Rk

g(∥x∥2 + ∥z∥2)dx
)
dz. (211)

We used the transfer lemma in equation (208), equation (207) in equation (209), the change of variable z =
(Σ/Σ11)−1/2w (where u is fixed) in the inner integral in equation (210), and the change of variable x = (Σ11)−1/2(u−
µu) and Fubini’s theorem in equation (211). Because equation (211) holds for all bounded measurable function h,

the density of Z is that of Y , hence Z
d
= Y and

∥Z∥2 d
= ∥Y ∥2. (212)

Observe finally that the equation above still holds if Y is replaced with any subvector of T of dimension ℓ, since
the distribution of T is spherical.

We now go back to the vector V1 = (X⊤
1 R⊤

1 )
⊤ of Proposition 4.10, which we assume to be of the form

V1 = µ + Σ1/2T , where T = (T1, . . . , Tp)
⊤ has a spherical distribution with a non-increasing generator g. Using

the notation of Proposition 4.3 for Tc and A∞, equation (212) and Lemma 4.8 respectively show that

T⊤
c A−1

∞ Tc
d
=

ℓ∑
i=1

T 2
i , and ∥R1∥2 d

=

ℓ∑
i=1

λi(Ti + si)
2,

for some vector s ∈ Rℓ and where the λi are the eignevalues of Σ22. Then, denoting δi := det(Σ22)−1/ℓλi, and
using that det(Σ22 −Σ21(Σ11)−1Σ12) ≤ det(Σ22),(

Vol(F∞
α )

Vol(B∞α )

)2/ℓ

= det(Σ/Σ11)1/ℓ
q1−α(T

⊤
c A−1

∞ Tc)

q1−α(∥R1∥2)

=

(
det(Σ22 −Σ21(Σ11)−1Σ12)

det(Σ22)

)1/ℓ
q1−α(

∑ℓ
i=1 T

2
i )

q1−α(
∑ℓ

i=1 δi(Ti + si)2)
(213)

≤ q1−α(
∑ℓ

i=1 T
2
i )

q1−α(
∑ℓ

i=1 δi(Ti + si)2)
. (214)

We now wish to apply Proposition 4.7 on the spherical vector Y := (T1, . . . , Tℓ) to conclude that the ratio above
is smaller than 1. For this we need to check that the generator of Y is non-increasing. Since g is assumed non-
increasing we can use that, for all 0 ≤ r ≤ r′ and x ∈ Rk, g(∥x∥2 + r) − g(∥x∥2 + r′) ≥ 0 so that, using equation
(206),

gY (r)− gY (r′) =
∫
Rk

g(∥x∥2 + r)− g(∥x∥2 + r′)dx ≥ 0.

Thus Proposition 4.7 applies to equation (214), which finishes the proof.

Proof of Proposition 4.11. For all i, define δi := λi/(λ1 · · ·λℓ)1/ℓ and (G1, . . . , Gℓ) to be a random vector with in-
dependent components, such that Gi follows the gamma distribution γ(δi, δ

−1
i ). Next, introduce T := (T1, . . . , Tℓ)

⊤

such that

Ti = εi
√
Gi − (1− εi)

√
Gi, (215)
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where εi ∼ Bernoulli(1/2), (ε1, . . . , εℓ) are mutually independent and are independent of (G1, . . . , Gℓ). Then
(T1, . . . , Tℓ) are independent, E[Ti] = 0 and T 2

i = Gi ∼ γ(δi, δ
−1
i ), so that Var(Ti) = δiδ

−1
i = 1. Next, define D to

be the diagonal matrix such that Dii = λ
1/2
i and define R1 := DT . Then E[R1] = 0, and because Var(Ti) = 1, we

have Σ := Cov(R1) = D2, and

∥Σ−1/2R1∥2 = R⊤
1 Σ

−1R1 = ∥T∥2 =

ℓ∑
i=1

T 2
i , (216)

det(Σ)−1/ℓ∥R1∥2 = det(Σ)−1/ℓT⊤D2T =

ℓ∑
i=1

δiT
2
i . (217)

We now apply Theorem 1.2 from [37], in order to describe the tail behaviour of both random variables above. For

this, observe that δiT
2
i ∼ γ(δi, 1). The Laplace transforms of

∑ℓ
i=1 T

2
i and

∑ℓ
i=1 δiT

2
i are then given by

L1(ω) := L
( ℓ∑

i=1

T 2
i

)
(ω) =

ℓ∏
i=1

1

(1 + δ−1
i ω)δi

, (218)

L2(ω) := L
( ℓ∑

i=1

δiT
2
i

)
(ω) =

ℓ∏
i=1

1

(1 + ω)δi
. (219)

To apply Theorem 1.2 from [37], we need to identify the abscissa of convergence of L1 and L2. The abscissa of
convergence of a (probability) measure ν over [0,∞) is the unique scalar σ0 ∈ R ∪ {−∞} such that the integral
f(z) =

∫
[0,+∞)

e−ztν(dt) converges for Re(z) > σ0, diverges for Re(z) < σ0 and has a singularity at σ0 [37], p

267. For L1 and L2, it is clear from equations (218) and (219) that their abscissa of convergence are given by
σ1 := −mini δi < 0 and σ2 := −1 respectively. We now apply [37], Theorem 1.2, on L1 and L2 (we check the
conditions for applying this result at the end of the proof). This yields

lim
t→+∞

logP(∥Σ−1/2R1∥2 > t)

logP(det(Σ)−1/ℓ∥R1∥2 > t)
=
σ1
σ2

=
−mini δi
−1 = min

i
δi < 1. (220)

Indeed, if mini δi ≥ 1, then we would have λ1 = . . . = λℓ which contradicts our assumption. Because both
logarithms above are negative, this yields

logP(∥Σ−1/2R1∥2 > t) > logP(det(Σ)−1/ℓ∥R1∥2 > t) for large t. (221)

We then take the exponential of the equation above, we compare the resulting CDFs (this reverses the ordering
w.r.t. “>”) and we compare the inverses of those CDFs (this reverses back the ordering). We finally obtain that
for α small enough,

q1−α(∥Σ−1/2R1∥2) > q1−α(det(Σ)−1/ℓ∥R1∥2). (222)

In particular, for α small enough, Vol(E∞α ) > Vol(B∞α ), which is the announced result. We now check the two
technical conditions of [37], Theorem 1.2, on L2 (the proof is similar for L1). First, for λ > 0,

λ logL2(σ2 + λ) = −
( ℓ∑

i=1

δi

)
λ log λ −−−−→

λ→0+
0. (223)

Second, for all 0 < λ1 ≤ λ2 sufficiently small,

L2(σ2 + λ2)

L2(σ2 + λ1)
=

ℓ∏
i=1

(
λ1
λ2

)−δi

=

(
λ2
λ1

)−γ

, (224)

with γ :=
∑ℓ

i=1 δi > 0. From [37], equation (1.3) and Lemma 3.1, this finishes the proof.

Proof of Lemma B.6. In this proof, we denote m := E[V1], m̂n := n−1
∑n

i=1 Vi for notational conciseness. We also
denote

Ti = Σ
−1/2
λ (Vi −m), T̂i = Σ̂

−1/2
n,λ (Vi − m̂n), νn =

1

n

n∑
j=1

δTj
, ν̂n =

1

n

n∑
j=1

δT̂j
. (225)
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Note that we are interested in the quantiles of (∥T̂1∥2, . . . , ∥T̂n∥2), since qn,α = np(nα) and npi,n = ∥T̂i∥2. Below we
borrow the empirical process notation, νn(f) = n−1

∑n
j=1 f(Tj). The proof is carried out by studying the empirical

characteristic function. Let t ∈ Rp. From the SLLN,

νn

(
ei⟨t,·⟩

)
=

1

n

n∑
j=1

ei⟨t,Tj⟩ a.s.−−→ E
[
ei⟨t,T1⟩

]
. (226)

Thus, for all t ∈ R, νn(ei⟨t,·⟩) → E
[
ei⟨t,T1⟩

]
a.s.. We then prove below that thanks to the continuity of the

characteristic functions and the separability of Rp, we can interchange the “a.s.” and “∀t ∈ Rp” to obtain that
almost surely,

∀t ∈ Rp, νn

(
ei⟨t,·⟩

)
−−−−→
n→∞

E
[
ei⟨t,T1⟩

]
. (227)

Let us prove this fact. Set D = Qp, which is a countable dense subset of Rp. From equation (226), for all t ∈ D,
there exists Ωt with P(Ωt) = 1 such that for all ω ∈ Ωt, νn(e

i⟨t,·⟩)
a.s.−−→ E

[
ei⟨t,T1⟩

]
. We set Ω′ := ∩t∈DΩt, which

has probability one and aim at proving that for all ω ∈ Ω′, equation (227) holds. Let ω ∈ Ω′, t ∈ Rp, ε > 0 and
t′ ∈ D to be chosen later. We can write∣∣∣νn(ei⟨t,·⟩)− E

[
ei⟨t,T1⟩

]∣∣∣ ≤ ∣∣∣νn(ei⟨t,·⟩)− νn(ei⟨t′,·⟩)∣∣∣+ ∣∣∣νn(ei⟨t′,·⟩)− E
[
ei⟨t

′,T1⟩
]∣∣∣+ ∣∣E[ei⟨t′,T1⟩

]
− E

[
ei⟨t,T1⟩

]∣∣.
In the last term above, t′ can be chosen such that this term is smaller than ε/3 from the continuity of t 7→ E

[
ei⟨t,T1⟩

]
and the density of D, and the second term is smaller than ε/3 for all n large enough, since equation (226) applies
for t′ ∈ D. Finally, for the first term,∣∣∣νn(ei⟨t,·⟩)− νn(ei⟨t′,·⟩)∣∣∣ ≤ 1

n

n∑
j=1

∣∣∣ei⟨t,Tj⟩ − ei⟨t′,Tj⟩
∣∣∣ = 2

n

n∑
j=1

∣∣∣∣ sin( ⟨t− t′, Tj⟩2

)∣∣∣∣ ≤ ( 1

n

n∑
j=1

∥Tj∥
)
∥t− t′∥. (228)

From the SLLN, the sum above is bounded by some Mω > 0 for n large enough, and thus t′ can also be chosen (as
a function of ω) such that this term is smaller than ε/3. We have thus proved that almost surely, equation (227)
holds.

We now prove that equation (227) also holds for ν̂n, and work similarly as above. For this, observe that for all
t ∈ Rp,∣∣∣ν̂n(ei⟨t,·⟩)− νn(ei⟨t,·⟩)∣∣∣ ≤ 1

n

n∑
j=1

∣∣∣ei⟨t,T̂j⟩ − ei⟨t,Tj⟩
∣∣∣ = 2

n

n∑
j=1

∣∣∣∣ sin( ⟨t, T̂j − Tj⟩2

)∣∣∣∣ ≤ ∥t∥n
n∑

j=1

∥T̂j − Tj∥. (229)

Furthermore, using the matrix operator norm such that ∥Mx∥ ≤ ∥M∥Op∥x∥,

∥T̂j − Tj∥ =
∥∥∥(Σ−1/2

λ − Σ̂
−1/2
n,λ

)
Vj −Σ

−1/2
λ m+ Σ̂

−1/2
n,λ m̂n

∥∥∥
≤
∥∥∥Σ−1/2

λ − Σ̂
−1/2
n,λ

∥∥∥
Op
∥Vj∥+

∥∥Σ−1/2
λ m− Σ̂

−1/2
n,λ m̂n

∥∥∥.
From equation (167), the continuous mapping theorem and the SLLN, for all t ̸= 0 (the case t = 0 is trivial),

1

∥t∥
∣∣∣ν̂n(ei⟨t,·⟩)− νn(ei⟨t,·⟩)∣∣∣ ≤ ∥∥∥Σ−1/2

λ − Σ̂
−1/2
n,λ

∥∥∥
Op

(
1

n

n∑
j=1

∥Vj∥
)
+
∥∥Σ−1/2

λ m− Σ̂
−1/2
n,λ m̂n

∥∥∥ a.s.−−−−→
n→∞

0. (230)

Note that for Σ̂
−1/2
n,λ → Σ

−1/2
λ to hold a.s., we either require that λ > 0 or min SpecΣ > 0, so that we can apply

the same arguments as those at the end of the proof of Proposition 4.1. Also, the a.s. convergence of equation
(230) does not depend on t, as the bound on the right-hand side of equation (230) does not depend on t. Hence,
almost surely,

∀t ∈ Rp,
∣∣∣ν̂n(ei⟨t,·⟩)− νn(ei⟨t,·⟩)∣∣∣ −−−−→

n→∞
0. (231)

Combining equation (231) with equation (227), we finally obtain that almost surely,

∀t ∈ Rp, ν̂n

(
ei⟨t,·⟩

)
−−−−→
n→∞

E
[
ei⟨t,T1⟩

]
. (232)
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Applying Lévy’s theorem sample by sample for ω ∈ Ω′, we deduce that almost surely, in the Prokhorov metric for
the weak convergence of measures over Rp,

ν̂n −−−−→
n→∞

νT1
. (233)

Above, νT1
is the probability measure of T1, defined over Rp. Applying pushforward integration with the continuous

map N(x) = ∥x∥2, almost surely (in the Prokhorov metric for probability measures over R),

N#ν̂n =
1

n

∑
j=1

δ∥T̂i∥2 −−−−→
n→∞

N#νT1
=: ν∥T1∥2 . (234)

Hence, almost surely, for all t ∈ R which is a continuity point of F∥T1∥2 , where F∥T1∥2 denotes the CDF of ∥T1∥2,

F̂n(t) =
1

n

n∑
j=1

1(∥T̂i∥2 ≤ t) −−−−→
n→∞

F∥T1∥2(t). (235)

We now denote Q∥T1∥2 the quantile function of ∥T1∥2 and Q̂n the empirical quantile function of (∥T̂1∥2, . . . , ∥T̂n∥2).
From equation (235) and [47], Lemma 21.2, we have that, almost surely, for all β ∈ (0, 1) which is a continuity
point of Q∥T1∥2 ,

Q̂n(β) = F̂−1
n (β) −−−−→

n→∞
Q∥T1∥2(β). (236)

In particular, this holds for β = 1 − α, since we have assumed that 1 − α was a continuity point of Q∥T1∥2 . To

finish, we need to show that equation (236) also holds for the order statistics qn,α = Q̂n(
n+1
n (1 − α)). For this,

from the assumptions, let V be a neighbourhood of 1 − α such that Q∥T1∥2 is continuous on V, and let M > 0 be

such that 1 − α + 1/M ∈ V. There exists n large enough such that n+1
n (1 − α) ≤ 1 − α + 1/M . Hence, from the

monotony of the empirical quantile, we have that for all such n,

Q̂n(1− α) ≤ Q̂n

(
n+ 1

n
(1− α)

)
≤ Q̂n(1− α+ 1/M). (237)

From equation (236) and the continuity of Q∥T1∥2 at both 1− α and 1− α+ 1/M , almost surely,

Q∥T1∥2(1− α) ≤ lim inf
n

Q̂n

(
n+ 1

n
(1− α)

)
≤ lim sup

n
Q̂n

(
n+ 1

n
(1− α)

)
≤ Q∥T1∥2(1− α+ 1/M).

Since this equation holds for all M > 0 large enough, we have that lim infn Q̂n(
n+1
n (1−α)) = lim supn Q̂n(

n+1
n (1−

α)), hence the sequence (Q̂n(
n+1
n (1− α)))n is convergent and almost surely,

qn,α = Q̂n

(
n+ 1

n
(1− α)

)
−−−−→
n→∞

Q∥T1∥2(1− α) = qE1−α. (238)

This finishes the proof of equation (103). We now prove equation (104). For this, introduce mX = E[X1],
m̂X

n := n−1
∑n

j=1Xi, and

Ui := (Σ11
λ )−1/2(Xi −mX), Ûi := (Σ̂11

n,λ)
−1/2(Xi − m̂X

n ), (239)

Ki :=

(
Ti
Ui

)
, K̂i :=

(
T̂i
Ûi

)
, µn =

1

n

n∑
j=1

δKj , µ̂n =
1

n

n∑
j=1

δK̂j
. (240)

We quickly show why we still have that almost surely,

∀t ∈ Rp+k, µ̂n

(
ei⟨t,·⟩

)
−−−−→
n→∞

E
[
ei⟨t,K1⟩

]
. (241)

First, equation (227) still holds when replacing Ti with Ki because the Ki remain iid, and the separability of Rp+k

and the continuity of t 7→ E
[
ei⟨t,K1⟩

]
still hold : that is,

∀t ∈ Rp+k, µn

(
ei⟨t,·⟩

)
−−−−→
n→∞

E
[
ei⟨t,K1⟩

]
. (242)
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We now show that equation (231) still holds when replacing Ti with Ki and T̂i with K̂i. We start from the bound

∥K̂j −Kj∥ =
√
∥T̂i − Ti∥2 + ∥Ûi − Ui∥2 ≤ ∥T̂i − Ti∥+ ∥Ûi − Ui∥. (243)

This bound implies that (see equation (229)) for all t ∈ Rp+k, t ̸= 0,

1

∥t∥
∣∣∣µ̂n

(
ei⟨t,·⟩

)
− µn

(
ei⟨t,·⟩

)∣∣∣ ≤ 1

n

n∑
j=1

∥K̂j −Kj∥ ≤
1

n

n∑
j=1

∥T̂j − Tj∥+
1

n

n∑
j=1

∥Ûj − Uj∥. (244)

We can then use the same arguments on the two sums above as the ones that lead to equation (230), to obtain
that a.s.,

∀t ∈ Rp+k,
∣∣∣µ̂n

(
ei⟨t,·⟩

)
− µn

(
ei⟨t,·⟩

)∣∣∣ −−−−→
n→∞

0. (245)

Combining equations (242) and (245), we obtain equation (241). Equation (241) implies that in the Prokhorov
metric, almost surely,

µ̂n −−−−→
n→∞

µK

Using pushforward integration with the continuous map (x, y) 7→ ∥x∥2 − ∥y∥2, we obtain again that almost surely,
for all t ∈ R which is a continuity point of F∥T1∥2−∥U1∥2 , where F∥T1∥2−∥U1∥2 denotes the CDF of ∥T1∥2 − ∥U1∥2,

F̂n(t) =
1

n

n∑
j=1

1(∥T̂i∥2 − ∥Ûi∥2 ≤ t) −−−−→
n→∞

F∥T1∥2−∥U1∥2(t). (246)

In particular, using the same arguments as for qn,α, we obtain that a.s.,

q′′n,α −−−−→
n→∞

Q∥T1∥2−∥U1∥2(1− α) = qF1−α. (247)

We finish with proving equation (105). For this, observe that for all i ∈ {1, . . . , n},

p′′i,n ≤ p′i,n ≤ p′′i,n + max
1≤j≤n

n(bnX)2j , (248)

hence

q′′n,α ≤ q′n,α ≤ q′′n,α + max
1≤j≤n

n(bnX)2j . (249)

Using the same arguments as in the proof of Proposition 3.4, the assumption that E[∥X1∥4q] < +∞ for some q > 1
implies that

max
1≤j≤n

n(bnX)2j
P−−−−→

n→∞
0. (250)

Combining equations (247) and (249), and using that a.s. convergence implies convergence in probability, we have

that q′n,α
P−−−−→

n→∞
qF1−α, which finishes the proof.
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