PDE-constrained random fields: application to GPR for the 3D wave equation ANR GAP

Iain Henderson, Pascal Noble, Olivier Roustant

INSA Toulouse
henderso@insa-toulouse.fr

5 Octobre 2022

Academic context

- PhD at the Institut de Mathématiques de Toulouse/INSA Toulouse, supervised by Pascal Noble and Olivier Roustant.
- Funded by the SHOM (Service Hydrographique et Océanographique de la Marine), contact : Remy Baraille

A physics informed machine learning problem

General problem :

A physics informed machine learning problem

General problem :

- unknown function $u: z \longmapsto u(z), z \in \mathcal{D}$

A physics informed machine learning problem

General problem :

- unknown function $u: z \longmapsto u(z), z \in \mathcal{D}$
- small database of values $B=\left\{u\left(z_{1}\right), \ldots, u\left(z_{n}\right)\right\}$

A physics informed machine learning problem

General problem :

- unknown function $u: z \longmapsto u(z), z \in \mathcal{D}$
- small database of values $B=\left\{u\left(z_{1}\right), \ldots, u\left(z_{n}\right)\right\}$
- u is a solution to a linear Partial Differential Equation (PDE) over \mathcal{D} :

A physics informed machine learning problem

General problem :

- unknown function $u: z \longmapsto u(z), z \in \mathcal{D}$
- small database of values $B=\left\{u\left(z_{1}\right), \ldots, u\left(z_{n}\right)\right\}$
- u is a solution to a linear Partial Differential Equation (PDE) over \mathcal{D} :

$$
\begin{equation*}
L u=0 \tag{1}
\end{equation*}
$$

A physics informed machine learning problem

General problem :

- unknown function $u: z \longmapsto u(z), z \in \mathcal{D}$
- small database of values $B=\left\{u\left(z_{1}\right), \ldots, u\left(z_{n}\right)\right\}$
- u is a solution to a linear Partial Differential Equation (PDE) over \mathcal{D} :

$$
\begin{equation*}
L u=0 \tag{1}
\end{equation*}
$$

Objective : reconstruct u from the knowledge of B and L.

A physics informed machine learning problem

General problem :

- unknown function $u: z \longmapsto u(z), z \in \mathcal{D}$
- small database of values $B=\left\{u\left(z_{1}\right), \ldots, u\left(z_{n}\right)\right\}$
- u is a solution to a linear Partial Differential Equation (PDE) over \mathcal{D} :

$$
\begin{equation*}
L u=0 \tag{1}
\end{equation*}
$$

Objective : reconstruct u from the knowledge of B and L. Possible solution : perform GPR on B, with a GP $(U(z))_{z \in \mathcal{D}}$ tailored to L,

A physics informed machine learning problem

General problem :

- unknown function $u: z \longmapsto u(z), z \in \mathcal{D}$
- small database of values $B=\left\{u\left(z_{1}\right), \ldots, u\left(z_{n}\right)\right\}$
- u is a solution to a linear Partial Differential Equation (PDE) over \mathcal{D} :

$$
\begin{equation*}
L u=0 \tag{1}
\end{equation*}
$$

Objective : reconstruct u from the knowledge of B and L.
Possible solution : perform GPR on B, with a GP $(U(z))_{z \in \mathcal{D}}$ tailored to L, i.e. such that
(1) the corresponding Kriging means \tilde{m} verify $L \tilde{m}=0$

A physics informed machine learning problem

General problem :

- unknown function $u: z \longmapsto u(z), z \in \mathcal{D}$
- small database of values $B=\left\{u\left(z_{1}\right), \ldots, u\left(z_{n}\right)\right\}$
- u is a solution to a linear Partial Differential Equation (PDE) over \mathcal{D} :

$$
\begin{equation*}
L u=0 \tag{1}
\end{equation*}
$$

Objective : reconstruct u from the knowledge of B and L.
Possible solution : perform GPR on B, with a GP $(U(z))_{z \in \mathcal{D}}$ tailored to L, i.e. such that
(1) the corresponding Kriging means \tilde{m} verify $L \tilde{m}=0$
(2) the sample paths \tilde{u} of U verify $L \tilde{u}=0$

Linear constraints on the Kriging means (1)

Why impose linear constraints on the Kriging means?

Linear constraints on the Kriging means (1)

Why impose linear constraints on the Kriging means?
Approximate $u: \mathcal{D} \rightarrow \mathbb{R}$, i.e. $u \in \mathcal{F}(\mathcal{D}, \mathbb{R})=E$

Linear constraints on the Kriging means (1)

Why impose linear constraints on the Kriging means?

Approximate $u: \mathcal{D} \rightarrow \mathbb{R}$, i.e. $u \in \mathcal{F}(\mathcal{D}, \mathbb{R})=E$

Prior knowledge : in fact, $u \in \operatorname{ker} L=F$:
Look for an interpolant of u directly in F rather than in E !

Linear constraints on the Kriging means (1)

Why impose linear constraints on the Kriging means?

Approximate $u: \mathcal{D} \rightarrow \mathbb{R}$, i.e. $u \in \mathcal{F}(\mathcal{D}, \mathbb{R})=E$

Prior knowledge : in fact, $u \in \operatorname{ker} L=F$:
Look for an interpolant of u directly in F rather than in E !
$F \subsetneq E \rightarrow$ "dim $F<\operatorname{dim} E^{\prime \prime}$: "dimension reduction".

Linear constraints on the Kriging means (1)

Why impose linear constraints on the Kriging means?

Approximate $u: \mathcal{D} \rightarrow \mathbb{R}$, i.e. $u \in \mathcal{F}(\mathcal{D}, \mathbb{R})=E$

Prior knowledge : in fact, $u \in \operatorname{ker} L=F$:
Look for an interpolant of u directly in F rather than in E !
$F \subsetneq E \rightarrow$ "dim $F<\operatorname{dim} E^{\prime \prime}$: "dimension reduction".

Linear constraints on the Kriging means (2)

- Unknown function $u: z \longmapsto u(z), z \in \mathcal{D}$.

Linear constraints on the Kriging means (2)

- Unknown function $u: z \longmapsto u(z), z \in \mathcal{D}$.
- $Z=\left(z_{1}, \ldots, z_{n}\right)^{T}$ a set of locations and $Y=\left(y_{1}, \ldots, y_{n}\right)^{T}$ a set of observations of u at Z

Linear constraints on the Kriging means (2)

- Unknown function $u: z \longmapsto u(z), z \in \mathcal{D}$.
- $Z=\left(z_{1}, \ldots, z_{n}\right)^{T}$ a set of locations and $Y=\left(y_{1}, \ldots, y_{n}\right)^{T}$ a set of observations of u at Z
Let $(U(z))_{z \in \mathcal{D}} \sim G P\left(0, k\left(z, z^{\prime}\right)\right)$.

Linear constraints on the Kriging means (2)

- Unknown function $u: z \longmapsto u(z), z \in \mathcal{D}$.
- $Z=\left(z_{1}, \ldots, z_{n}\right)^{T}$ a set of locations and $Y=\left(y_{1}, \ldots, y_{n}\right)^{T}$ a set of observations of u at Z
Let $(U(z))_{z \in \mathcal{D}} \sim G P\left(0, k\left(z, z^{\prime}\right)\right)$. Kriging mean :

$$
\begin{aligned}
\tilde{m}(z) & =k(z, Z) k(Z, Z)^{-1} Y \\
& =\sum_{i=1}^{n} \alpha_{i} k\left(z, z_{i}\right) \\
\rightarrow \tilde{m} \in & \operatorname{Span}\left(k\left(\cdot, z_{1}\right), \ldots, k\left(\cdot, z_{n}\right)\right)
\end{aligned}
$$

Linear constraints on the Kriging means (2)

- Unknown function $u: z \longmapsto u(z), z \in \mathcal{D}$.
- $Z=\left(z_{1}, \ldots, z_{n}\right)^{T}$ a set of locations and $Y=\left(y_{1}, \ldots, y_{n}\right)^{T}$ a set of observations of u at Z
Let $(U(z))_{z \in \mathcal{D}} \sim G P\left(0, k\left(z, z^{\prime}\right)\right)$. Kriging mean :

$$
\begin{gathered}
\tilde{m}(z)=k(z, Z) k(Z, Z)^{-1} Y \\
=\sum_{i=1}^{n} \alpha_{i} k\left(z, z_{i}\right) \\
\rightarrow \tilde{m} \in \operatorname{Span}\left(k\left(\cdot, z_{1}\right), \ldots, k\left(\cdot, z_{n}\right)\right) \\
L(k(\cdot, z))=0 \forall z \text { ensures that } L \tilde{m}=0 .
\end{gathered}
$$

Some examples of GPR for differential operators

Given L, find a kernel k_{L} s.t. $L\left(k_{L}(\cdot, z)\right)=0 \forall z$;

Some examples of GPR for differential operators

Given L, find a kernel k_{L} s.t. $L\left(k_{L}(\cdot, z)\right)=0 \forall z ; \Delta=\sum_{i=1}^{d} \partial_{x_{i} x_{i}}^{2}$:

Some examples of GPR for differential operators

Given L, find a kernel k_{L} s.t. $L\left(k_{L}(\cdot, z)\right)=0 \forall z ; \Delta=\sum_{i=1}^{d} \partial_{x_{i} x_{i}}^{2}$:

- Laplace : $\Delta u=0$ Mendes and da Costa Júnior [2012], Ginsbourger et al. [2016]

Some examples of GPR for differential operators

Given L, find a kernel k_{L} s.t. $L\left(k_{L}(\cdot, z)\right)=0 \forall z ; \Delta=\sum_{i=1}^{d} \partial_{x_{i} x_{i}}^{2}$:

- Laplace : $\Delta u=0$ Mendes and da Costa Júnior [2012], Ginsbourger et al. [2016]
- Heat : $\partial_{t}-D \Delta u=0$ Albert and Rath [2020]

Some examples of GPR for differential operators

Given L, find a kernel k_{L} s.t. $L\left(k_{L}(\cdot, z)\right)=0 \forall z ; \Delta=\sum_{i=1}^{d} \partial_{x_{i} x_{i}}^{2}$:

- Laplace : $\Delta u=0$ Mendes and da Costa Júnior [2012], Ginsbourger et al. [2016]
- Heat : $\partial_{t}-D \Delta u=0$ Albert and Rath [2020]
- Div/Curl : $\nabla \cdot u=0, \nabla \times u=0$ Scheuerer and Schlather [2012]

Some examples of GPR for differential operators

Given L, find a kernel k_{L} s.t. $L\left(k_{L}(\cdot, z)\right)=0 \forall z ; \Delta=\sum_{i=1}^{d} \partial_{x_{i} x_{i}}^{2}$:

- Laplace : $\Delta u=0$ Mendes and da Costa Júnior [2012], Ginsbourger et al. [2016]
- Heat : $\partial_{t}-D \Delta u=0$ Albert and Rath [2020]
- Div/Curl : $\nabla \cdot u=0, \nabla \times u=0$ Scheuerer and Schlather [2012]
- Continuum mechanics : Jidling et al. [2018]

Some examples of GPR for differential operators

Given L, find a kernel k_{L} s.t. $L\left(k_{L}(\cdot, z)\right)=0 \forall z ; \Delta=\sum_{i=1}^{d} \partial_{x_{i} x_{i}}^{2}$:

- Laplace : $\Delta u=0$ Mendes and da Costa Júnior [2012], Ginsbourger et al. [2016]
- Heat : $\partial_{t}-D \Delta u=0$ Albert and Rath [2020]
- Div/Curl : $\nabla \cdot u=0, \nabla \times u=0$ Scheuerer and Schlather [2012]
- Continuum mechanics : Jidling et al. [2018]
- Helmholtz : $-\Delta u=\lambda u$ Albert and Rath [2020]

Some examples of GPR for differential operators

Given L, find a kernel k_{L} s.t. $L\left(k_{L}(\cdot, z)\right)=0 \forall z ; \Delta=\sum_{i=1}^{d} \partial_{x_{i} x_{i}}^{2}$:

- Laplace : $\Delta u=0$ Mendes and da Costa Júnior [2012], Ginsbourger et al. [2016]
- Heat : $\partial_{t}-D \Delta u=0$ Albert and Rath [2020]
- Div/Curl : $\nabla \cdot u=0, \nabla \times u=0$ Scheuerer and Schlather [2012]
- Continuum mechanics : Jidling et al. [2018]
- Helmholtz : $-\Delta u=\lambda u$ Albert and Rath [2020]
- Stationary Maxwell : Wahlstrom et al. [2013], Jidling et al. [2017],Lange-Hegermann [2018]

Some examples of GPR for differential operators

Given L, find a kernel k_{L} s.t. $L\left(k_{L}(\cdot, z)\right)=0 \forall z ; \Delta=\sum_{i=1}^{d} \partial_{x_{i} x_{i}}^{2}$:

- Laplace : $\Delta u=0$ Mendes and da Costa Júnior [2012], Ginsbourger et al. [2016]
- Heat : $\partial_{t}-D \Delta u=0$ Albert and Rath [2020]
- Div/Curl : $\nabla \cdot u=0, \nabla \times u=0$ Scheuerer and Schlather [2012]
- Continuum mechanics : Jidling et al. [2018]
- Helmholtz : $-\Delta u=\lambda u$ Albert and Rath [2020]
- Stationary Maxwell : Wahlstrom et al. [2013], Jidling et al. [2017],Lange-Hegermann [2018]
- See also latent forces : Álvarez et al. [2009], López-Lopera et al. [2021]

Some examples of GPR for differential operators

Given L, find a kernel k_{L} s.t. $L\left(k_{L}(\cdot, z)\right)=0 \forall z ; \Delta=\sum_{i=1}^{d} \partial_{x_{i} x_{i}}^{2}$:

- Laplace : $\Delta u=0$ Mendes and da Costa Júnior [2012], Ginsbourger et al. [2016]
- Heat : $\partial_{t}-D \Delta u=0$ Albert and Rath [2020]
- Div/Curl : $\nabla \cdot u=0, \nabla \times u=0$ Scheuerer and Schlather [2012]
- Continuum mechanics : Jidling et al. [2018]
- Helmholtz : $-\Delta u=\lambda u$ Albert and Rath [2020]
- Stationary Maxwell : Wahlstrom et al. [2013], Jidling et al. [2017],Lange-Hegermann [2018]
- See also latent forces : Álvarez et al. [2009], López-Lopera et al. [2021] Uses representations of solutions of $L u=0$ as

$$
\begin{equation*}
u=G f \tag{2}
\end{equation*}
$$

Some examples of GPR for differential operators

Given L, find a kernel k_{L} s.t. $L\left(k_{L}(\cdot, z)\right)=0 \forall z ; \Delta=\sum_{i=1}^{d} \partial_{x_{i} x_{i}}^{2}$:

- Laplace : $\Delta u=0$ Mendes and da Costa Júnior [2012], Ginsbourger et al. [2016]
- Heat : $\partial_{t}-D \Delta u=0$ Albert and Rath [2020]
- Div/Curl : $\nabla \cdot u=0, \nabla \times u=0$ Scheuerer and Schlather [2012]
- Continuum mechanics : Jidling et al. [2018]
- Helmholtz : $-\Delta u=\lambda u$ Albert and Rath [2020]
- Stationary Maxwell : Wahlstrom et al. [2013], Jidling et al. [2017],Lange-Hegermann [2018]
- See also latent forces : Álvarez et al. [2009], López-Lopera et al. [2021] Uses representations of solutions of $L u=0$ as

$$
\begin{equation*}
u=G f \tag{2}
\end{equation*}
$$

Then $k_{L}=(G \otimes G) k$ yields suitable Kriging means.

GPR for the wave equation

Use explicit formulas for solving $\left(\partial_{t t}^{2}-c^{2} \Delta\right) u=\square u=0 \ldots$

Build a kernel k s.t. $\square k(\cdot,(x, t))=0 \forall(x, t)$.

Direct numerical simulation

$K<\triangleleft \square \gg 1 \rightarrow++$

Reconstruction with GPR

Linear constraints on the sample paths (Ginsbourger et al. [2016])

Let $U=(U(z))_{z \in \mathcal{D}} \sim G P\left(0, k\left(z, z^{\prime}\right)\right)$.

Linear constraints on the sample paths (Ginsbourger et al. [2016])

Let $U=(U(z))_{z \in \mathcal{D}} \sim G P\left(0, k\left(z, z^{\prime}\right)\right)$.

- $U(z):(\Omega, \mathcal{F}, \mathbb{P}) \longrightarrow \mathbb{R}$ is a (Gaussian) random variable.

Linear constraints on the sample paths (Ginsbourger et al. [2016])

Let $U=(U(z))_{z \in \mathcal{D}} \sim G P\left(0, k\left(z, z^{\prime}\right)\right)$.

- $U(z):(\Omega, \mathcal{F}, \mathbb{P}) \longrightarrow \mathbb{R}$ is a (Gaussian) random variable.
- Forall $\omega \in \Omega, z \longmapsto U(z)(\omega)$ is a sample path.

Linear constraints on the sample paths (Ginsbourger et al. [2016])

Let $U=(U(z))_{z \in \mathcal{D}} \sim G P\left(0, k\left(z, z^{\prime}\right)\right)$.

- $U(z):(\Omega, \mathcal{F}, \mathbb{P}) \longrightarrow \mathbb{R}$ is a (Gaussian) random variable.
- Forall $\omega \in \Omega, z \longmapsto U(z)(\omega)$ is a sample path.
let L be a linear operator acting on a suitable space of functions.

Linear constraints on the sample paths (Ginsbourger et al. [2016])

Let $U=(U(z))_{z \in \mathcal{D}} \sim G P\left(0, k\left(z, z^{\prime}\right)\right)$.

- $U(z):(\Omega, \mathcal{F}, \mathbb{P}) \longrightarrow \mathbb{R}$ is a (Gaussian) random variable.
- Forall $\omega \in \Omega, z \longmapsto U(z)(\omega)$ is a sample path.
let L be a linear operator acting on a suitable space of functions.
General property : bilinearity of the covariance yields

$$
\mathbb{P}(L(U)=0)=1 \Longleftrightarrow \forall z \in \mathcal{D}, \quad L(k(\cdot, z))=0
$$

Linear constraints on the sample paths (Ginsbourger et al. [2016])

Let $U=(U(z))_{z \in \mathcal{D}} \sim G P\left(0, k\left(z, z^{\prime}\right)\right)$.

- $U(z):(\Omega, \mathcal{F}, \mathbb{P}) \longrightarrow \mathbb{R}$ is a (Gaussian) random variable.
- Forall $\omega \in \Omega, z \longmapsto U(z)(\omega)$ is a sample path.
let L be a linear operator acting on a suitable space of functions.
General property : bilinearity of the covariance yields

$$
\mathbb{P}(L(U)=0)=1 \Longleftrightarrow \forall z \in \mathcal{D}, \quad L(k(\cdot, z))=0
$$

Rigorous proof : case-by-case depending on L.

Linear constraints on the sample paths (Ginsbourger et al. [2016])

Let $U=(U(z))_{z \in \mathcal{D}} \sim G P\left(0, k\left(z, z^{\prime}\right)\right)$.

- $U(z):(\Omega, \mathcal{F}, \mathbb{P}) \longrightarrow \mathbb{R}$ is a (Gaussian) random variable.
- Forall $\omega \in \Omega, z \longmapsto U(z)(\omega)$ is a sample path.
let L be a linear operator acting on a suitable space of functions.
General property : bilinearity of the covariance yields

$$
\mathbb{P}(L(U)=0)=1 \Longleftrightarrow \forall z \in \mathcal{D}, \quad L(k(\cdot, z))=0
$$

Rigorous proof : case-by-case depending on L. Previous linear PDEs are elliptic or parabolic:

Linear constraints on the sample paths (Ginsbourger et al. [2016])

Let $U=(U(z))_{z \in \mathcal{D}} \sim G P\left(0, k\left(z, z^{\prime}\right)\right)$.

- $U(z):(\Omega, \mathcal{F}, \mathbb{P}) \longrightarrow \mathbb{R}$ is a (Gaussian) random variable.
- Forall $\omega \in \Omega, z \longmapsto U(z)(\omega)$ is a sample path.
let L be a linear operator acting on a suitable space of functions.
General property : bilinearity of the covariance yields

$$
\mathbb{P}(L(U)=0)=1 \Longleftrightarrow \forall z \in \mathcal{D}, \quad L(k(\cdot, z))=0
$$

Rigorous proof : case-by-case depending on L.
Previous linear PDEs are elliptic or parabolic:

- Regular solutions (C^{k} or C^{∞} solutions)

Linear constraints on the sample paths (Ginsbourger et al. [2016])

Let $U=(U(z))_{z \in \mathcal{D}} \sim G P\left(0, k\left(z, z^{\prime}\right)\right)$.

- $U(z):(\Omega, \mathcal{F}, \mathbb{P}) \longrightarrow \mathbb{R}$ is a (Gaussian) random variable.
- Forall $\omega \in \Omega, z \longmapsto U(z)(\omega)$ is a sample path.
let L be a linear operator acting on a suitable space of functions.
General property : bilinearity of the covariance yields

$$
\mathbb{P}(L(U)=0)=1 \Longleftrightarrow \forall z \in \mathcal{D}, \quad L(k(\cdot, z))=0
$$

Rigorous proof : case-by-case depending on L.
Previous linear PDEs are elliptic or parabolic:

- Regular solutions (C^{k} or C^{∞} solutions)
- PDE $L u=0$ can be understood using classical derivatives

Linear constraints on the sample paths (Ginsbourger et al. [2016])

Let $U=(U(z))_{z \in \mathcal{D}} \sim G P\left(0, k\left(z, z^{\prime}\right)\right)$.

- $U(z):(\Omega, \mathcal{F}, \mathbb{P}) \longrightarrow \mathbb{R}$ is a (Gaussian) random variable.
- Forall $\omega \in \Omega, z \longmapsto U(z)(\omega)$ is a sample path.
let L be a linear operator acting on a suitable space of functions.
General property : bilinearity of the covariance yields

$$
\mathbb{P}(L(U)=0)=1 \Longleftrightarrow \forall z \in \mathcal{D}, \quad L(k(\cdot, z))=0
$$

Rigorous proof : case-by-case depending on L.
Previous linear PDEs are elliptic or parabolic:

- Regular solutions (C^{k} or C^{∞} solutions)
- PDE $L u=0$ can be understood using classical derivatives

Prototype for hyperbolic PDEs : the wave equation

3D free space wave eq. : consider $\Delta=\partial_{x x}^{2}+\partial_{y y}^{2}+\partial_{z z}^{2}$ and the PDE

$$
\begin{cases}L u & =\frac{1}{c^{2}} \partial_{t t}^{2} u-\Delta u=\square u=0, \quad(x, t) \in \mathbb{R}^{3} \times \mathbb{R}^{+} \tag{3}\\ u(x, 0) & =u_{0}(x), \quad \partial_{t} u(x, 0)=v_{0}(x)\end{cases}
$$

Prototype for hyperbolic PDEs : the wave equation

3D free space wave eq. : consider $\Delta=\partial_{x x}^{2}+\partial_{y y}^{2}+\partial_{z z}^{2}$ and the PDE

$$
\begin{cases}L u & =\frac{1}{c^{2}} \partial_{t t}^{2} u-\Delta u=\square u=0, \quad(x, t) \in \mathbb{R}^{3} \times \mathbb{R}^{+} \tag{3}\\ u(x, 0) & =u_{0}(x), \quad \partial_{t} u(x, 0)=v_{0}(x)\end{cases}
$$

Solution representation formula :

$$
\begin{equation*}
u(x, t)=\left(F_{t} * v_{0}\right)(x)+\left(\dot{F}_{t} * u_{0}\right)(x)=G\left(u_{0}, v_{0}\right)(x, t) \tag{4}
\end{equation*}
$$

Prototype for hyperbolic PDEs : the wave equation

3D free space wave eq. : consider $\Delta=\partial_{x x}^{2}+\partial_{y y}^{2}+\partial_{z z}^{2}$ and the PDE

$$
\begin{cases}L u & =\frac{1}{c^{2}} \partial_{t t}^{2} u-\Delta u=\square u=0, \quad(x, t) \in \mathbb{R}^{3} \times \mathbb{R}^{+} \tag{3}\\ u(x, 0) & =u_{0}(x), \quad \partial_{t} u(x, 0)=v_{0}(x)\end{cases}
$$

Solution representation formula :

$$
\begin{equation*}
u(x, t)=\left(F_{t} * v_{0}\right)(x)+\left(\dot{F}_{t} * u_{0}\right)(x)=G\left(u_{0}, v_{0}\right)(x, t) \tag{4}
\end{equation*}
$$

Contrarily to previous examples, F_{t} and \dot{F}_{t} are "singular" :

Prototype for hyperbolic PDEs : the wave equation

3D free space wave eq. : consider $\Delta=\partial_{x x}^{2}+\partial_{y y}^{2}+\partial_{z z}^{2}$ and the PDE

$$
\begin{cases}L u & =\frac{1}{c^{2}} \partial_{t t}^{2} u-\Delta u=\square u=0, \quad(x, t) \in \mathbb{R}^{3} \times \mathbb{R}^{+} \tag{3}\\ u(x, 0) & =u_{0}(x), \quad \partial_{t} u(x, 0)=v_{0}(x)\end{cases}
$$

Solution representation formula :

$$
\begin{equation*}
u(x, t)=\left(F_{t} * v_{0}\right)(x)+\left(\dot{F}_{t} * u_{0}\right)(x)=G\left(u_{0}, v_{0}\right)(x, t) \tag{4}
\end{equation*}
$$

Contrarily to previous examples, F_{t} and \dot{F}_{t} are "singular" :

$$
\begin{equation*}
F_{t}=\frac{\sigma_{c t}}{4 \pi c^{2} t}(\text { singular measure }) \text { and } \dot{F}_{t}=\partial_{t} F_{t} \tag{5}
\end{equation*}
$$

Prototype for hyperbolic PDEs : the wave equation

3D free space wave eq. : consider $\Delta=\partial_{x x}^{2}+\partial_{y y}^{2}+\partial_{z z}^{2}$ and the PDE

$$
\begin{cases}L u & =\frac{1}{c^{2}} \partial_{t t}^{2} u-\Delta u=\square u=0, \quad(x, t) \in \mathbb{R}^{3} \times \mathbb{R}^{+} \tag{3}\\ u(x, 0) & =u_{0}(x), \quad \partial_{t} u(x, 0)=v_{0}(x)\end{cases}
$$

Solution representation formula :

$$
\begin{equation*}
u(x, t)=\left(F_{t} * v_{0}\right)(x)+\left(\dot{F}_{t} * u_{0}\right)(x)=G\left(u_{0}, v_{0}\right)(x, t) \tag{4}
\end{equation*}
$$

Contrarily to previous examples, F_{t} and \dot{F}_{t} are "singular" :

$$
\begin{equation*}
F_{t}=\frac{\sigma_{c t}}{4 \pi c^{2} t}(\text { singular measure }) \text { and } \dot{F}_{t}=\partial_{t} F_{t} \tag{5}
\end{equation*}
$$

In some cases (e.g. u_{0} and/or v_{0} only C^{1}), u is well defined but not of class C^{2} !

Prototype for hyperbolic PDEs : the wave equation

3D free space wave eq. : consider $\Delta=\partial_{x x}^{2}+\partial_{y y}^{2}+\partial_{z z}^{2}$ and the PDE

$$
\begin{cases}L u & =\frac{1}{c^{2}} \partial_{t t}^{2} u-\Delta u=\square u=0, \quad(x, t) \in \mathbb{R}^{3} \times \mathbb{R}^{+} \tag{3}\\ u(x, 0) & =u_{0}(x), \quad \partial_{t} u(x, 0)=v_{0}(x)\end{cases}
$$

Solution representation formula :

$$
\begin{equation*}
u(x, t)=\left(F_{t} * v_{0}\right)(x)+\left(\dot{F}_{t} * u_{0}\right)(x)=G\left(u_{0}, v_{0}\right)(x, t) \tag{4}
\end{equation*}
$$

Contrarily to previous examples, F_{t} and \dot{F}_{t} are "singular" :

$$
\begin{equation*}
F_{t}=\frac{\sigma_{c t}}{4 \pi c^{2} t}(\text { singular measure }) \text { and } \dot{F}_{t}=\partial_{t} F_{t} \tag{5}
\end{equation*}
$$

In some cases (e.g. u_{0} and/or v_{0} only C^{1}), u is well defined but not of class C^{2} !
\longrightarrow Link between L, k_{L} and underlying GP U not obvious anymore.

Distributional formulation of PDEs

Let \mathcal{D} be an open set of \mathbb{R}.

Distributional formulation of PDEs

Let \mathcal{D} be an open set of \mathbb{R}. Note D the single derivative operator.

Distributional formulation of PDEs

Let \mathcal{D} be an open set of \mathbb{R}. Note D the single derivative operator. Linear differential operator L :

$$
L u=\sum_{k=1}^{n} a_{k} D^{k} u
$$

Distributional formulation of PDEs

Let \mathcal{D} be an open set of \mathbb{R}. Note D the single derivative operator. Linear differential operator L :

$$
L u=\sum_{k=1}^{n} a_{k} D^{k} u
$$

Suppose u is a classical solution to $L u=0: u$ is of class C^{n} and verifies

$$
\begin{equation*}
\forall x \in \mathcal{D},(L u)(x)=0 \tag{6}
\end{equation*}
$$

Distributional formulation of PDEs

Let \mathcal{D} be an open set of \mathbb{R}. Note D the single derivative operator. Linear differential operator L :

$$
L u=\sum_{k=1}^{n} a_{k} D^{k} u
$$

Suppose u is a classical solution to $L u=0: u$ is of class C^{n} and verifies

$$
\begin{equation*}
\forall x \in \mathcal{D},(L u)(x)=0 \tag{6}
\end{equation*}
$$

Multiply (6) by $\varphi \in C_{0}^{\infty}(\mathcal{D})$ and integrate over \mathcal{D} :

$$
\begin{equation*}
\forall \varphi \in C_{0}^{\infty}(\mathcal{D}), \int_{\mathcal{D}} L u(x) \varphi(x) d x=0 \tag{7}
\end{equation*}
$$

Distributional formulation of PDEs

IBP on (7) :

$$
\int_{\mathcal{D}} D^{k} u(x) \varphi(x) d x=(-1)^{k} \int_{\mathcal{D}} u(x) D^{k}(\varphi(x)) d x
$$

Distributional formulation of PDEs

IBP on (7) :

$$
\int_{\mathcal{D}} D^{k} u(x) \varphi(x) d x=(-1)^{k} \int_{\mathcal{D}} u(x) D^{k}(\varphi(x)) d x
$$

Define $L^{*} v=\sum_{k=1}^{n} a_{k}(-1)^{k} D^{k} v$.

Distributional formulation of PDEs

IBP on (7) :

$$
\int_{\mathcal{D}} D^{k} u(x) \varphi(x) d x=(-1)^{k} \int_{\mathcal{D}} u(x) D^{k}(\varphi(x)) d x
$$

Define $L^{*} v=\sum_{k=1}^{n} a_{k}(-1)^{k} D^{k} v$. Then,

$$
\forall \varphi \in C_{0}^{\infty}(\mathcal{D}), \int_{\mathcal{D}} L u(x) \varphi(x) d x=\int_{\mathcal{D}} u(x) L^{*} \varphi(x) d x=0
$$

Distributional formulation of PDEs

IBP on (7) :

$$
\int_{\mathcal{D}} D^{k} u(x) \varphi(x) d x=(-1)^{k} \int_{\mathcal{D}} u(x) D^{k}(\varphi(x)) d x
$$

Define $L^{*} v=\sum_{k=1}^{n} a_{k}(-1)^{k} D^{k} v$. Then,

$$
\forall \varphi \in C_{0}^{\infty}(\mathcal{D}), \int_{\mathcal{D}} L u(x) \varphi(x) d x=\int_{\mathcal{D}} u(x) L^{*} \varphi(x) d x=0
$$

A function u is a solution to the PDE $L u=0$ in the distributional sense if

$$
\begin{equation*}
\forall \varphi \in C_{0}^{\infty}(\mathcal{D}), \int_{\mathcal{D}} u(x) L^{*} \varphi(x) d x=0 \tag{8}
\end{equation*}
$$

Distributional formulation of PDEs

IBP on (7) :

$$
\int_{\mathcal{D}} D^{k} u(x) \varphi(x) d x=(-1)^{k} \int_{\mathcal{D}} u(x) D^{k}(\varphi(x)) d x
$$

Define $L^{*} v=\sum_{k=1}^{n} a_{k}(-1)^{k} D^{k} v$. Then,

$$
\forall \varphi \in C_{0}^{\infty}(\mathcal{D}), \int_{\mathcal{D}} L u(x) \varphi(x) d x=\int_{\mathcal{D}} u(x) L^{*} \varphi(x) d x=0
$$

A function u is a solution to the PDE $L u=0$ in the distributional sense if

$$
\begin{equation*}
\forall \varphi \in C_{0}^{\infty}(\mathcal{D}), \int_{\mathcal{D}} u(x) L^{*} \varphi(x) d x=0 \tag{8}
\end{equation*}
$$

The standard hypothesis for (8) to make sense is $u \in L_{\text {loc }}^{1}(\mathcal{D})$:

$$
\int_{K}|u|<+\infty \quad \text { for all compact set } \quad K \subset \mathcal{D}
$$

Imposing distributional diff. constraints on sample paths

Can we have something like

Imposing distributional diff. constraints on sample paths

Can we have something like

$$
\begin{gathered}
\mathbb{P}(L(U)=0 \text { in the sense of distribs })=1 \\
\forall z \in \mathcal{D}, \quad L(k(\cdot, z))=0 \text { in the sense of distribs }
\end{gathered}
$$

Imposing distributional diff. constraints on sample paths

Can we have something like

$$
\begin{gathered}
\mathbb{P}(L(U)=0 \text { in the sense of distribs })=1 \\
\forall z \in \mathcal{D}, \quad L(k(\cdot, z))=0 \text { in the sense of distribs }
\end{gathered}
$$

Answer :

Imposing distributional diff. constraints on sample paths

Can we have something like

$$
\begin{gathered}
\mathbb{P}(L(U)=0 \text { in the sense of distribs })=1 \\
\forall z \in \mathcal{D}, \quad L(k(\cdot, z))=0 \text { in the sense of distribs }
\end{gathered}
$$

Answer: yes.

Random fields under distributional diff. constraints

Proposition 1 (H. et al. [2022])

Let $\mathcal{D} \subset \mathbb{R}^{d}$ be an open set and let $L=\sum_{|k| \leq n} a_{k}(x) \partial^{k}$ be a linear differential operator with coefficients $a_{k}(x) \in \mathcal{C}^{|k|}(\mathcal{D})$. Let $U=(U(x))_{x \in \mathcal{D}}$ be a measurable centered second order random field with covariance kernel $k\left(x, x^{\prime}\right)$. Suppose that its standard deviation function $\sigma: x \longmapsto \sqrt{k(x, x)}$ lies in $L_{\text {loc }}^{1}(\mathcal{D})$.

1) Then on a set of probability 1 , the trajectories of U lie in $L_{\text {loc }}^{1}(\mathcal{D})$ as well as the functions $k(\cdot, x)$ for all $x \in \mathcal{D}$.
2) The following statements are equivalent:

- $\mathbb{P}(L(U)=0$ in the sense of distributions) $=1$
- $\forall x \in \mathcal{D}, L\left(k_{x}\right)=0$ in the sense of distributions.

Random fields under distributional diff. constraints

Proposition 1 (H. et al. [2022])

Let $\mathcal{D} \subset \mathbb{R}^{d}$ be an open set and let $L=\sum_{|k| \leq n} a_{k}(x) \partial^{k}$ be a linear differential operator with coefficients $a_{k}(x) \in \mathcal{C}^{|k|}(\mathcal{D})$. Let $U=(U(x))_{x \in \mathcal{D}}$ be a measurable centered second order random field with covariance kernel $k\left(x, x^{\prime}\right)$. Suppose that its standard deviation function $\sigma: x \longmapsto \sqrt{k(x, x)}$ lies in $L_{\text {loc }}^{1}(\mathcal{D})$.

1) Then on a set of probability 1 , the trajectories of U lie in $L_{\text {loc }}^{1}(\mathcal{D})$ as well as the functions $k(\cdot, x)$ for all $x \in \mathcal{D}$.
2) The following statements are equivalent:

- $\mathbb{P}(L(U)=0$ in the sense of distributions $)=1$
- $\forall x \in \mathcal{D}, L\left(k_{x}\right)=0$ in the sense of distributions.

Extends results from Ginsbourger et al. [2016]. to linear distributional diff. constraints. Application to GPR : this property is inherited to conditioned GPs and the Kriging means.

GP modelling for the 3D wave equation

3D free space wave equation :

$$
\begin{cases}L u & =\frac{1}{c^{2}} \partial_{t t}^{2} u-\Delta u=\square u=0, \quad(x, t) \in \mathbb{R}^{3} \times \mathbb{R}^{+} \tag{9}\\ u(x, 0) & =u_{0}(x) \\ \partial_{t} u(x, 0) & =v_{0}(x)\end{cases}
$$

GP modelling for the 3D wave equation

3D free space wave equation :

$$
\begin{cases}L u & =\frac{1}{c^{2}} \partial_{t t}^{2} u-\Delta u=\square u=0, \quad(x, t) \in \mathbb{R}^{3} \times \mathbb{R}^{+} \tag{9}\\ u(x, 0) & =u_{0}(x) \\ \partial_{t} u(x, 0) & =v_{0}(x)\end{cases}
$$

Fourier in the space variable on (9)

$$
\begin{equation*}
u(x, t)=\left(F_{t} * v_{0}\right)(x)+\left(\dot{F}_{t} * u_{0}\right)(x) \quad \forall(x, t) \in \mathbb{R}^{3} \times \mathbb{R}^{+} \tag{10}
\end{equation*}
$$

GP modelling for the 3D wave equation

3D free space wave equation :

$$
\begin{cases}L u & =\frac{1}{c^{2}} \partial_{t t}^{2} u-\Delta u=\square u=0, \quad(x, t) \in \mathbb{R}^{3} \times \mathbb{R}^{+} \tag{9}\\ u(x, 0) & =u_{0}(x) \\ \partial_{t} u(x, 0) & =v_{0}(x)\end{cases}
$$

Fourier in the space variable on (9)

$$
\begin{equation*}
u(x, t)=\left(F_{t} * v_{0}\right)(x)+\left(\dot{F}_{t} * u_{0}\right)(x) \quad \forall(x, t) \in \mathbb{R}^{3} \times \mathbb{R}^{+} \tag{10}
\end{equation*}
$$

with

$$
\begin{equation*}
F_{t}=\frac{\sigma_{c t}}{4 \pi c^{2} t} \quad \text { and } \quad \dot{F}_{t}=\partial_{t} F_{t} \tag{11}
\end{equation*}
$$

Details on F_{t} and \dot{F}_{t}

$\longrightarrow F_{t}=\frac{\sigma_{c t}}{4 \pi c^{2} t}$ means that

Details on F_{t} and \dot{F}_{t}

$\longrightarrow F_{t}=\frac{\sigma_{c t}}{4 \pi c^{2} t}$ means that

$$
\int_{\mathbb{R}^{3}} f(x) F_{t}(d x)=\frac{t}{4 \pi} \int_{0}^{2 \pi} \int_{0}^{\pi} f(c t \gamma) \sin \theta d \theta d \varphi=\frac{t}{4 \pi} \int_{S(0,1)} f(c t \gamma) d \Omega
$$

where γ is the unit length vector $\gamma=(\sin \theta \cos \varphi, \sin \theta \sin \varphi, \cos \theta)^{T}$.

Details on F_{t} and \dot{F}_{t}

$\longrightarrow F_{t}=\frac{\sigma_{c t}}{4 \pi c^{2} t}$ means that

$$
\int_{\mathbb{R}^{3}} f(x) F_{t}(d x)=\frac{t}{4 \pi} \int_{0}^{2 \pi} \int_{0}^{\pi} f(c t \gamma) \sin \theta d \theta d \varphi=\frac{t}{4 \pi} \int_{S(0,1)} f(c t \gamma) d \Omega
$$

where γ is the unit length vector $\gamma=(\sin \theta \cos \varphi, \sin \theta \sin \varphi, \cos \theta)^{T}$.
\longrightarrow Convolution between functions and measures:

$$
(f * g)(x)=\int_{\mathbb{R}^{3}} g(x-y) f(y) d y \quad(\mu * g)(x)=\int_{\mathbb{R}^{3}} g(x-y) \mu(d y)
$$

Details on F_{t} and \dot{F}_{t}

$\longrightarrow F_{t}=\frac{\sigma_{c t}}{4 \pi c^{2} t}$ means that

$$
\int_{\mathbb{R}^{3}} f(x) F_{t}(d x)=\frac{t}{4 \pi} \int_{0}^{2 \pi} \int_{0}^{\pi} f(c t \gamma) \sin \theta d \theta d \varphi=\frac{t}{4 \pi} \int_{S(0,1)} f(c t \gamma) d \Omega
$$

where γ is the unit length vector $\gamma=(\sin \theta \cos \varphi, \sin \theta \sin \varphi, \cos \theta)^{T}$.
\longrightarrow Convolution between functions and measures:

$$
(f * g)(x)=\int_{\mathbb{R}^{3}} g(x-y) f(y) d y \quad(\mu * g)(x)=\int_{\mathbb{R}^{3}} g(x-y) \mu(d y)
$$

$\longrightarrow \dot{F}_{t}=\partial_{t} F_{t}$ means that

$$
\begin{aligned}
\left\langle\dot{F}_{t}, f\right\rangle & =\partial_{t} \int f(x) d F_{t}(x) \\
& =\frac{1}{4 \pi} \int_{S(0,1)} f(c t \gamma) d \Omega+\frac{c}{4 \pi} \int_{S(0,1)} \nabla f(c t \gamma) \cdot \gamma d \Omega
\end{aligned}
$$

GP modelling for the 3D wave equation

Suppose that u_{0} and v_{0} are unknown.

GP modelling for the 3D wave equation

Suppose that u_{0} and v_{0} are unknown.
\longrightarrow model them as random functions.

GP modelling for the 3D wave equation

Suppose that u_{0} and v_{0} are unknown.
\longrightarrow model them as random functions.
Let $\left(U_{0}(x)\right)_{x \in \mathbb{R}^{3}} \sim G P\left(0, k_{u}\right)$ and $\left(V_{0}(x)\right)_{x \in \mathbb{R}^{3}} \sim G P\left(0, k_{v}\right)$ be two independent GPs.

GP modelling for the 3D wave equation

Suppose that u_{0} and v_{0} are unknown.
\longrightarrow model them as random functions.
Let $\left(U_{0}(x)\right)_{x \in \mathbb{R}^{3}} \sim G P\left(0, k_{u}\right)$ and $\left(V_{0}(x)\right)_{x \in \mathbb{R}^{3}} \sim G P\left(0, k_{v}\right)$ be two independent GPs.

Model u_{0} and v_{0} as sample paths drawn from U_{0} and V_{0} respectively: $\exists \omega \in \Omega, u_{0}(\cdot)=U_{0}(\cdot)(\omega)$ and $v_{0}(\cdot)=V_{0}(\cdot)(\omega)$.

GP modelling for the 3D wave equation

Suppose that u_{0} and v_{0} are unknown.
\longrightarrow model them as random functions.
Let $\left(U_{0}(x)\right)_{x \in \mathbb{R}^{3}} \sim G P\left(0, k_{u}\right)$ and $\left(V_{0}(x)\right)_{x \in \mathbb{R}^{3}} \sim G P\left(0, k_{v}\right)$ be two independent GPs.

Model u_{0} and v_{0} as sample paths drawn from U_{0} and V_{0} respectively: $\exists \omega \in \Omega, u_{0}(\cdot)=U_{0}(\cdot)(\omega)$ and $v_{0}(\cdot)=V_{0}(\cdot)(\omega)$.

For fixed (x, t), define the random variables $V(x, t), U(x, t)$ and $W(x, t)$ by

$$
\begin{align*}
V(x, t) & : \omega \longmapsto\left(F_{t} * V_{0}(\cdot)(\omega)\right)(x) \tag{12}\\
U(x, t) & : \omega \longmapsto\left(\dot{F}_{t} * U_{0}(\cdot)(\omega)\right)(x) \tag{13}\\
W(x, t) & :=V(x, t)+U(x, t) \tag{14}
\end{align*}
$$

GP modelling for the 3D wave equation

Proposition 2

Note $\mathcal{D}=\mathbb{R}^{3} \times \mathbb{R}$. Define the functions

$$
\begin{array}{ll}
\forall z, z^{\prime} \in \mathcal{D}, & k_{v}^{\text {wave }}\left(z, z^{\prime}\right)=\left[\left(F_{t} \otimes F_{t^{\prime}}\right) * k_{v}\right]\left(x, x^{\prime}\right) \\
& k_{u}^{\text {wave }}\left(z, z^{\prime}\right)=\left[\left(\dot{F}_{t} \otimes \dot{F}_{t^{\prime}}\right) * k_{u}\right]\left(x, x^{\prime}\right) \tag{16}
\end{array}
$$

1) Then $(U(z))_{z \in \mathcal{D}},(V(z))_{z \in \mathcal{D}}$ and $(W(z))_{z \in \mathcal{D}}$ are centered GPs.
2) The covariance kernels of $(U(z))_{z \in \mathcal{D}},(V(z))_{z \in \mathcal{D}}$ and $(W(z))_{z \in \mathcal{D}}$ are given by $k_{u}^{\text {wave }}, k_{v}^{\text {wave }}$ and $k_{u}^{\text {wave }}+k_{v}^{\text {wave }}$ respectively.

Sketch of proof : bilinearity of the covariance + technical details...

Solving inverse problems

$$
\text { For all } z \in \mathcal{D}, \quad \square k_{u}^{\text {wave }}(\cdot, z)=\square k_{v}^{\text {wave }}(\cdot, z)=0 \text { ! }
$$

Solving inverse problems

For all $z \in \mathcal{D}, \quad \square k_{u}^{\text {wave }}(\cdot, z)=\square k_{v}^{\text {wave }}(\cdot, z)=0$!
Proposition $1 \Longrightarrow$ any random field with either of the covariance kernels above has its sample paths solutions to the wave equation.

Solving inverse problems

For all $z \in \mathcal{D}, \quad \square k_{u}^{\text {wave }}(\cdot, z)=\square k_{v}^{\text {wave }}(\cdot, z)=0$!
Proposition $1 \Longrightarrow$ any random field with either of the covariance kernels above has its sample paths solutions to the wave equation.

Objective now : perform GPR with either of these covariance kernels.

Solving inverse problems

For all $z \in \mathcal{D}, \quad \square k_{u}^{\text {wave }}(\cdot, z)=\square k_{v}^{\text {wave }}(\cdot, z)=0$!
Proposition $1 \Longrightarrow$ any random field with either of the covariance kernels above has its sample paths solutions to the wave equation.

Objective now : perform GPR with either of these covariance kernels.
\rightarrow Parameter estimation (marginal likelihood)

Solving inverse problems

For all $z \in \mathcal{D}, \quad \square k_{u}^{\text {wave }}(\cdot, z)=\square k_{v}^{\text {wave }}(\cdot, z)=0$!
Proposition $1 \Longrightarrow$ any random field with either of the covariance kernels above has its sample paths solutions to the wave equation.

Objective now : perform GPR with either of these covariance kernels.
\rightarrow Parameter estimation (marginal likelihood)
\rightarrow function prediction/reconstruction (Kriging mean/covariance)

Localization of point sources

Truncated kernel for v_{0}, around $x_{0} \in \mathbb{R}^{3}$, radius R :

Localization of point sources

Truncated kernel for v_{0}, around $x_{0} \in \mathbb{R}^{3}$, radius R :

$$
\begin{array}{r}
k_{v}^{R}\left(x, x^{\prime}\right)=k_{v}\left(x, x^{\prime}\right) \frac{\mathbb{1}_{B\left(x_{0}, R\right)}(x)}{4 \pi R^{3} / 3} \frac{\mathbb{1}_{B\left(x_{0}, R\right)}}{4 \pi R^{3} / 3} \\
k_{v}^{\text {wave }}\left((x, t),\left(x^{\prime}, t^{\prime}\right)\right)=\left[\left(F_{t} \otimes F_{t^{\prime}}\right) * k_{v}^{R}\right]\left(x, x^{\prime}\right)
\end{array}
$$

Localization of point sources

Truncated kernel for v_{0}, around $x_{0} \in \mathbb{R}^{3}$, radius R :

$$
\begin{aligned}
& k_{v}^{R}\left(x, x^{\prime}\right)=k_{v}\left(x, x^{\prime}\right) \frac{\mathbb{1}_{B\left(x_{0}, R\right)}(x)}{4 \pi R^{3} / 3} \frac{\mathbb{1}_{B\left(x_{0}, R\right)}}{4 \pi R^{3} / 3} \\
& k_{v}^{\text {wave }}\left((x, t),\left(x^{\prime}, t^{\prime}\right)\right)=\left[\left(F_{t} \otimes F_{t^{\prime}}\right) * k_{v}^{R}\right]\left(x, x^{\prime}\right)
\end{aligned}
$$

$\left(x_{0}, R, c\right)$ are hyperparameters of $k_{V}^{\text {wave }}$. Limit $R \rightarrow 0$: point source.

Localization of point sources

Truncated kernel for v_{0}, around $x_{0} \in \mathbb{R}^{3}$, radius R :

$$
\begin{array}{r}
k_{v}^{R}\left(x, x^{\prime}\right)=k_{v}\left(x, x^{\prime}\right) \frac{\mathbb{1}_{B\left(x_{0}, R\right)}(x)}{4 \pi R^{3} / 3} \frac{\mathbb{1}_{B\left(x_{0}, R\right)}}{4 \pi R^{3} / 3} \\
k_{v}^{\text {wave }}\left((x, t),\left(x^{\prime}, t^{\prime}\right)\right)=\left[\left(F_{t} \otimes F_{t^{\prime}}\right) * k_{v}^{R}\right]\left(x, x^{\prime}\right)
\end{array}
$$

$\left(x_{0}, R, c\right)$ are hyperparameters of $k_{V}^{\text {wave }}$. Limit $R \rightarrow 0$: point source.

Objective : recover x_{0}^{*}, the true source position, given sensor data w.r.t. $u(x, t)$.

Localization of point sources

Truncated kernel for v_{0}, around $x_{0} \in \mathbb{R}^{3}$, radius R :

$$
\begin{array}{r}
k_{v}^{R}\left(x, x^{\prime}\right)=k_{v}\left(x, x^{\prime}\right) \frac{\mathbb{1}_{B\left(x_{0}, R\right)}(x)}{4 \pi R^{3} / 3} \frac{\mathbb{1}_{B\left(x_{0}, R\right)}}{4 \pi R^{3} / 3} \\
k_{v}^{\text {wave }}\left((x, t),\left(x^{\prime}, t^{\prime}\right)\right)=\left[\left(F_{t} \otimes F_{t^{\prime}}\right) * k_{v}^{R}\right]\left(x, x^{\prime}\right)
\end{array}
$$

$\left(x_{0}, R, c\right)$ are hyperparameters of $k_{V}^{\text {wave }}$. Limit $R \rightarrow 0$: point source.
Objective : recover x_{0}^{*}, the true source position, given sensor data w.r.t. $u(x, t)$.Suppose that all the hyperparameters are set to the correct value except x_{0}. Solve :

$$
x_{0}^{*}=\underset{x_{0} \in \mathbb{R}^{3}}{\arg \min } u_{o b s}^{T}\left(K_{x_{0}}+\lambda I\right)^{-1} u_{o b s}+\log \operatorname{det}\left(K_{x_{0}}+\lambda I\right)=: L\left(x_{0}\right)
$$

Minimize negative marginal likelihood \equiv GPS localization

Initial condition reconstruction

The Kriging means are also solutions to the wave equation : $\square \tilde{m}=0$

Initial condition reconstruction

The Kriging means are also solutions to the wave equation : $\square \tilde{m}=0$
\longrightarrow if we observe values of a function u that is solution to $\square u=0$, then \tilde{m} provides approximations for u_{0} and v_{0} with :

Initial condition reconstruction

The Kriging means are also solutions to the wave equation : $\square \tilde{m}=0$
\longrightarrow if we observe values of a function u that is solution to $\square u=0$, then \tilde{m} provides approximations for u_{0} and v_{0} with :

$$
\begin{aligned}
\tilde{m}(x, 0) & \simeq u(x, 0)=u_{0}(x) \\
\partial_{t} \tilde{m}(x, 0) & \simeq \partial_{t} u(x, 0)=v_{0}(x)
\end{aligned}
$$

- Test case : radial symmetry around some x_{0}, source size R.

Initial condition reconstruction

The Kriging means are also solutions to the wave equation : $\square \tilde{m}=0$
\longrightarrow if we observe values of a function u that is solution to $\square u=0$, then \tilde{m} provides approximations for u_{0} and v_{0} with :

$$
\begin{aligned}
\tilde{m}(x, 0) & \simeq u(x, 0)=u_{0}(x) \\
\partial_{t} \tilde{m}(x, 0) & \simeq \partial_{t} u(x, 0)=v_{0}(x)
\end{aligned}
$$

- Test case : radial symmetry around some x_{0}, source size R.
- Estimate $\left(x_{0}, R, c\right)$

Initial condition reconstruction

The Kriging means are also solutions to the wave equation : $\square \tilde{m}=0$
\longrightarrow if we observe values of a function u that is solution to $\square u=0$, then \tilde{m} provides approximations for u_{0} and v_{0} with :

$$
\begin{aligned}
\tilde{m}(x, 0) & \simeq u(x, 0)=u_{0}(x) \\
\partial_{t} \tilde{m}(x, 0) & \simeq \partial_{t} u(x, 0)=v_{0}(x)
\end{aligned}
$$

- Test case : radial symmetry around some x_{0}, source size R.
- Estimate $\left(x_{0}, R, c\right)$

Test case : v_{0} only : use $k_{v}^{\text {wave }}$ for GPR ; Matérn kernel for k_{v}.

$$
\left\{\begin{array}{l}
u_{0}(x)=0 \\
v_{0}(x)=A \mathbb{1}_{\left[R_{1}, R_{2}\right]}\left(\left|x-x_{0}\right|\right)\left(1+\cos \left(\frac{2 \pi\left(\left|x-x_{0}\right|-\frac{R_{1}+R_{2}}{2}\right)}{R_{2}-R_{1}}\right)\right)
\end{array}\right.
$$

Initial condition reconstruction

The Kriging means are also solutions to the wave equation : $\square \tilde{m}=0$
\longrightarrow if we observe values of a function u that is solution to $\square u=0$, then \tilde{m} provides approximations for u_{0} and v_{0} with :

$$
\begin{aligned}
\tilde{m}(x, 0) & \simeq u(x, 0)=u_{0}(x) \\
\partial_{t} \tilde{m}(x, 0) & \simeq \partial_{t} u(x, 0)=v_{0}(x)
\end{aligned}
$$

- Test case : radial symmetry around some x_{0}, source size R.
- Estimate $\left(x_{0}, R, c\right)$

Test case : v_{0} only : use $k_{v}^{\text {wave }}$ for GPR ; Matérn kernel for k_{v}.

$$
\left\{\begin{array}{l}
u_{0}(x)=0 \\
v_{0}(x)=A \mathbb{1}_{\left[R_{1}, R_{2}\right]}\left(\left|x-x_{0}\right|\right)\left(1+\cos \left(\frac{2 \pi\left(\left|x-x_{0}\right|-\frac{R_{1}+R_{2}}{2}\right)}{R_{2}-R_{1}}\right)\right)
\end{array}\right.
$$

\longrightarrow Simulate numerically the corresponding solution $u(x, t)$.

Initial condition reconstruction

- Kriging data : $B=\left\{u\left(x_{i}, t_{j}\right), 1 \leq i \leq N_{C}, 1 \leq j \leq N_{T}\right\}+$ noisy data

Initial condition reconstruction

- Kriging data : $B=\left\{u\left(x_{i}, t_{j}\right), 1 \leq i \leq N_{C}, 1 \leq j \leq N_{T}\right\}+$ noisy data
- $N_{C}=30$ sensors scattered over $[0,1]^{3}$ (Latin hypercube), $N_{T}=75$.

Initial condition reconstruction

- Kriging data : $B=\left\{u\left(x_{i}, t_{j}\right), 1 \leq i \leq N_{C}, 1 \leq j \leq N_{T}\right\}+$ noisy data
- $N_{C}=30$ sensors scattered over $[0,1]^{3}$ (Latin hypercube), $N_{T}=75$.

Goals

Initial condition reconstruction

- Kriging data : $B=\left\{u\left(x_{i}, t_{j}\right), 1 \leq i \leq N_{C}, 1 \leq j \leq N_{T}\right\}+$ noisy data
- $N_{C}=30$ sensors scattered over $[0,1]^{3}$ (Latin hypercube), $N_{T}=75$.

Goals \longrightarrow Physical parameter estimation/recovery : $\left(x_{0}, R, c\right)$

Initial condition reconstruction

- Kriging data : $B=\left\{u\left(x_{i}, t_{j}\right), 1 \leq i \leq N_{C}, 1 \leq j \leq N_{T}\right\}$ + noisy data
- $N_{C}=30$ sensors scattered over $[0,1]^{3}$ (Latin hypercube), $N_{T}=75$.

Goals \longrightarrow Physical parameter estimation/recovery : $\left(x_{0}, R, c\right)$
\longrightarrow initial condition reconstruction

Physical parameter recovery

Perform Log-marginal likelihood maximization with

$$
\theta=\left(c, R, x_{0}, \theta_{\text {matern }}\right)
$$

Physical parameter recovery

Perform Log-marginal likelihood maximization with

$$
\theta=\left(c, R, x_{0}, \theta_{\text {matern }}\right)
$$

Example for $\left|c-c^{*}\right|$:

Initial condition reconstruction

Future perspectives: Sobolev regularity of GPs

Natural generalization of distributional formulation of PDEs : replace $C_{c}^{\infty}(\mathcal{D})$ with larger space of test functions, e.g. $H^{1}(\mathcal{D})$.
\rightarrow variational/weak formulation

Future perspectives: Sobolev regularity of GPs

Natural generalization of distributional formulation of PDEs : replace $C_{c}^{\infty}(\mathcal{D})$ with larger space of test functions, e.g. $H^{1}(\mathcal{D})$.
\rightarrow variational/weak formulation
Natural regularity: Sobolev $\rightarrow H^{1}(\mathcal{D}), W^{m, p}(\mathcal{D}) \ldots$

$$
\|f\|_{H^{1}}^{2}:=\int_{\mathcal{D}} f(x)^{2} d x+\int_{\mathcal{D}}|\nabla f(x)|^{2} d x
$$

Future perspectives: Sobolev regularity of GPs

Natural generalization of distributional formulation of PDEs : replace $C_{c}^{\infty}(\mathcal{D})$ with larger space of test functions, e.g. $H^{1}(\mathcal{D})$.
\rightarrow variational/weak formulation
Natural regularity: Sobolev $\rightarrow H^{1}(\mathcal{D}), W^{m, p}(\mathcal{D}) \ldots$

$$
\|f\|_{H^{1}}^{2}:=\int_{\mathcal{D}} f(x)^{2} d x+\int_{\mathcal{D}}|\nabla f(x)|^{2} d x
$$

Natural interpretation of Sobolev norms : energy, energy balance,... Tackle physics problems with GP modelling :
\rightarrow identify GPs whose sample paths enjoy a specified form of Sobolev regularity
\rightarrow how to control their Sobolev norm?
\rightarrow obtain posterior convergence rates in Sobolev norm...
\rightarrow see H. [2022]

Some conclusions

- random fields under linear differential constraints: solutions in the distributional sense.

Some conclusions

- random fields under linear differential constraints: solutions in the distributional sense.
- GP modelling for the wave equation : formulas for $k_{u}^{\text {wave }}$ and $k_{v}^{\text {wave }}$.

Some conclusions

- random fields under linear differential constraints: solutions in the distributional sense.
- GP modelling for the wave equation : formulas for $k_{u}^{\text {wave }}$ and $k_{v}^{\text {wave }}$.
- Inverse problem approach : numerical experiments.

References I

C. G. Albert and K. Rath. Gaussian process regression for data fulfilling linear differential equations with localized sources. Entropy, 22(2), 2020. ISSN 1099-4300. URL https://www.mdpi.com/1099-4300/22/2/152.
D. Ginsbourger, O. Roustant, and N. Durrande. On degeneracy and invariances of random fields paths with applications in Gaussian process modelling. Journal of Statistical Planning and Inference, page 170 :117 128, 2016.
I H. Sobolev regularity of Gaussian random fields. working paper or preprint, September 2022. URL https://hal.archives-ouvertes.fr/hal-03769576.
I. H., O. Roustant, and P. Noble. Stochastic processes under linear differential constraints: Application to gaussian process regression for the 3 dimensional free space wave equation. arXiv, 2021. URL https://arxiv.org/abs/2111.12035.

References II

I H., Pascal Noble, and Olivier Roustant. Characterization of the second order random fields subject to linear distributional PDE constraints. working paper or preprint, September 2022. URL https://hal.archives-ouvertes.fr/hal-03770715.
C. Jidling, N. Wahlström, A. Wills, and T. B. Schön. Linearly constrained Gaussian processes. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 30. Curran Associates, Inc., 2017. URL https://proceedings.neurips.cc/paper/2017/file/ 71ad16ad2c4d81f348082ff6c4b20768-Paper.pdf.
C. Jidling, J. Hendriks, N. Wahlstrom, A. Gregg, T. Schon, C. Wensrich, and A. Wills. Probabilistic modelling and reconstruction of strain. Nuclear Instruments \& Methods in Physics Research Section B-beam Interactions With Materials and Atoms, 436 :141-155, 2018.

References III

M. Lange-Hegermann. Algorithmic linearly constrained Gaussian processes. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 31. Curran Associates, Inc., 2018. URL https://proceedings.neurips.cc/paper/2018/file/ 68b1fbe7f16e4ae3024973f12f3cb313-Paper.pdf.
A. F. López-Lopera, N. Durrande, and M. Álvarez. Physically-inspired Gaussian process models for post-transcriptional regulation in drosophila. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 18 :656-666, 2021.
Fábio Macêdo Mendes and Edson Alves da Costa Júnior. Bayesian inference in the numerical solution of Laplace's equation. AIP Conference Proceedings, 1443(1) :72-79, 2012. doi : 10.1063/1.3703622. URL https://aip.scitation.org/doi/abs/10.1063/1.3703622.

References IV

M. Scheuerer and M. Schlather. Covariance models for divergence-free and curl-free random vector fields. Stochastic Models, 28 :433-451, 2012.
N. Wahlstrom, M. Kok, T. B. Schön, and F. Gustafsson. Modeling magnetic fields using Gaussian processes. 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, pages 3522-3526, 2013.
M. Álvarez, D. Luengo, and N. D. Lawrence. Latent force models. In D. van Dyk and M. Welling, editors, Proceedings of the Twelth International Conference on Artificial Intelligence and Statistics, volume 5 of Proceedings of Machine Learning Research, pages 9-16, Hilton Clearwater Beach Resort, Clearwater Beach, Florida USA, 16-18 Apr 2009. PMLR. URL https://proceedings.mlr.press/v5/alvarez09a.html.

"Explicit" formulas for $\left(F_{t} \otimes F_{t^{\prime}}\right) * k_{v}$ and $\left(\dot{F}_{t} \otimes \dot{F}_{t^{\prime}}\right) * k_{u}$

More explicitly,

$$
\begin{aligned}
& {\left[\left(F_{t} \otimes F_{t^{\prime}}\right) * k_{v}\right]\left(x, x^{\prime}\right)} \\
& \quad=t t^{\prime} \int_{S(0,1) \times S(0,1)} k_{v}\left(x-c t \gamma, x^{\prime}-c t^{\prime} \gamma^{\prime}\right) \frac{d \Omega d \Omega^{\prime}}{(4 \pi)^{2}} \\
& \begin{aligned}
& {\left[\left(\dot{F}_{t} \otimes \dot{F}_{t^{\prime}}\right) * k_{u}\right]\left(x, x^{\prime}\right)=\int_{S(0,1) \times S(0,1)}\left(k_{u}\left(x-c t \gamma, x^{\prime}-c t^{\prime} \gamma^{\prime}\right)\right.} \\
&-c t \nabla_{1} k_{u}\left(x-c t \gamma, x^{\prime}-c t^{\prime} \gamma^{\prime}\right) \cdot \gamma \\
&-c t^{\prime} \nabla_{2} k_{u}\left(x-c t \gamma, x^{\prime}-c t^{\prime} \gamma^{\prime}\right) \cdot \gamma^{\prime} \\
&\left.+c^{2} t t^{\prime} \gamma^{T} \nabla_{1} \nabla_{2} k_{u}\left(x-c t \gamma, x^{\prime}-c t^{\prime} \gamma^{\prime}\right) \gamma^{\prime}\right) \frac{d \Omega d \Omega^{\prime}}{(4 \pi)^{2}}
\end{aligned}
\end{aligned}
$$

Radial symmetry formulas

$$
\begin{aligned}
k_{\mathrm{v}}^{\text {wave }}\left(z, z^{\prime}\right) & =\frac{\operatorname{sgn}\left(t t^{\prime}\right)}{16 c^{2} r r^{\prime}} \sum_{\varepsilon, \varepsilon^{\prime} \in\{-1,1\}} \varepsilon \varepsilon^{\prime} K_{\mathrm{v}}\left((r+\varepsilon c t)^{2},\left(r^{\prime}+\varepsilon^{\prime} c\left|t^{\prime}\right|\right)^{2}\right) \\
k_{\mathrm{u}}^{\operatorname{wave}}\left(z, z^{\prime}\right) & = \\
& \left.\frac{1}{4 r r^{\prime}} \sum_{\varepsilon, \varepsilon^{\prime} \in\{-1,1\}}(r+\varepsilon c t)\left(r^{\prime}+\varepsilon^{\prime} c\left|t^{\prime}\right|\right)\right)_{u}^{0}\left((r+\varepsilon c t)^{2},\left(r^{\prime}+\varepsilon^{\prime} c\left|t^{\prime}\right|\right)^{2}\right)
\end{aligned}
$$

