Méthodes de régression à noyau sous contrainte d'équations aux dérivées partielles

lain Henderson

Thèse dirigée par Pascal Noble et Olivier Roustant

INSA Toulouse/IMT

28 Septembre 2023

Plan de l'exposé

- Contexte ML et EDP, notions et outils principaux
 - Contexte ML et EDP
 - Régression à noyau, processus gaussiens
 - Notion de solution d'une EDP
- Contraintes physiques sur un processus gaussien
 - Contrainte d'EDP distributionnelle sur un processus aléatoire
 - Régularité Sobolev des processus gaussiens
- 3 Applications "numériques"
 - Covariances pour l'équation des ondes
 - GPR et schémas numériques
- Ouvertures et conclusion

Plan de l'exposé

- Contexte ML et EDP, notions et outils principaux
 - Contexte ML et EDP
 - Régression à noyau, processus gaussiens
 - Notion de solution d'une EDP
- 2 Contraintes physiques sur un processus gaussien
 - Contrainte d'EDP distributionnelle sur un processus aléatoire
 - Régularité Sobolev des processus gaussiens
- 3 Applications "numériques"
 - Covariances pour l'équation des ondes
 - GPR et schémas numériques
- Ouvertures et conclusion

Estimer grâce aux données

Estimer grâce aux données

Phénomène d'origine

Reconstruction

Formalisation du problème :

• X: paramètres d'entrée; Y: réponses; fonction u, correspondance entre observation $x \in X$ et résultat correspondant $u(x) \in Y$:

Formalisation du problème :

• X: paramètres d'entrée; Y: réponses; fonction u, correspondance entre observation $x \in X$ et résultat correspondant $u(x) \in Y$:

$$u: \begin{cases} X & \longrightarrow Y, \\ x & \longmapsto u(x). \end{cases}$$

Formalisation du problème :

• X: paramètres d'entrée; Y: réponses; fonction u, correspondance entre observation $x \in X$ et résultat correspondant $u(x) \in Y$:

$$u: \begin{cases} X & \longrightarrow Y, \\ x & \longmapsto u(x). \end{cases}$$

Données :

$$\mathcal{B} = \{(x_1, y_1), ..., (x_n, y_n)\}, \quad y_i = u(x_i) + \varepsilon_i.$$

Formalisation du problème :

• X: paramètres d'entrée; Y: réponses; fonction u, correspondance entre observation $x \in X$ et résultat correspondant $u(x) \in Y$:

$$u: \begin{cases} X & \longrightarrow Y, \\ x & \longmapsto u(x). \end{cases}$$

Données :

$$\mathcal{B} = \{(x_1, y_1), ..., (x_n, y_n)\}, \quad y_i = u(x_i) + \varepsilon_i.$$

A partir de \mathcal{B} , fabriquer $\hat{u}: X \to Y$, dans l'espoir que " $\hat{u} \simeq u$ ".

Apprentissage machine, approximation de fonctions

- Plusieurs méthodes existent : régression linéaire, régression par réseaux de neurones, régression à noyau...
- Point important : exploiter la structure des données.
- Méthodes souvent flexibles, adaptées aux problèmes (inverses) mal posés.
- Méthodes qui s'appliquent à de plus en plus de domaines, "récemment" en physique [1].

^{1.} RAISSI, M., PERDIKARIS, P., & KARNIADAKIS, G. (2019). Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys., 378, 686-707.

Quelques problèmes (inverses) typiques en physique

 Modèles mathématiques puissants : équations aux dérivées partielles (EDPs).

transport :
$$\begin{cases} \partial_t u + c \partial_x u = 0, \\ u_{|t=0} = u_0. \end{cases} \quad \text{chaleur} : \begin{cases} \partial_t u - D \partial_{xx} u = 0, \\ u_{|t=0} = u_0. \end{cases} \quad (1)$$

- Problèmes typiques : en notant z = (x, t) et étant donné $\mathcal{B} = \{u(z_1), ..., u(z_n)\},$
 - \rightarrow Estimer u? Estimer u_0 ? Estimer c, D?

Quelques problèmes (inverses) typiques en physique

 Modèles mathématiques puissants : équations aux dérivées partielles (EDPs).

transport :
$$\begin{cases} \partial_t u + c \partial_x u = 0, \\ u_{|t=0} = u_0. \end{cases}$$
 chaleur :
$$\begin{cases} \partial_t u - D \partial_{xx} u = 0, \\ u_{|t=0} = u_0. \end{cases}$$
 (1)

- Problèmes typiques : en notant z = (x, t) et étant donné $\mathcal{B} = \{u(z_1), ..., u(z_n)\},$
 - \rightarrow Estimer u? Estimer u_0 ? Estimer c, D?

Ce sont des problèmes d'approximation de fonctions \rightarrow méthodes de ML?

Machine learning et modèles physiques

- Combiner modèle et données
 - \rightarrow en pratique, imposer des lois physiques dans des méthodes de ML.

Machine learning et modèles physiques

- Combiner modèle et données
 - → en pratique, imposer des lois physiques dans des méthodes de ML.

Figure 1 – Karniadakis, G. E., Kevrekidis, I. G., Lu, L., Perdikaris, P., Wang, S., & Yang, L. (2021). Physics-informed machine learning. *Nat. Rev. Phys.*, *3*(6), 422-440

Approches/outils mathématiques a priori très différents.

Pourquoi combiner physique et méthode de régression?

$$\text{chaleur 1D}: \ \begin{cases} \partial_t u - D \partial_{xx} u = 0, \\ u_{|t=0} = u_0, \ u(0,t) = 2, \ u(1,t) = 1/2. \end{cases}$$

Plan de l'exposé

- Contexte ML et EDP, notions et outils principaux
 - Contexte ML et EDP
 - Régression à noyau, processus gaussiens
 - Notion de solution d'une EDP
- 2 Contraintes physiques sur un processus gaussien
 - Contrainte d'EDP distributionnelle sur un processus aléatoire
 - Régularité Sobolev des processus gaussiens
- 3 Applications "numériques"
 - Covariances pour l'équation des ondes
 - GPR et schémas numériques
- Ouvertures et conclusion

Soient $(\Omega, \mathcal{F}, \mathbb{P})$ un espace probabilisé et \mathcal{D} un ensemble.

Soient $(\Omega, \mathcal{F}, \mathbb{P})$ un espace probabilisé et \mathcal{D} un ensemble.

• $(U(z))_{z \in \mathcal{D}}$ est un processus aléatoire si pour tout z, U(z) est une v.a.r.

Soient $(\Omega, \mathcal{F}, \mathbb{P})$ un espace probabilisé et \mathcal{D} un ensemble.

- $(U(z))_{z \in \mathcal{D}}$ est un processus aléatoire si pour tout z, U(z) est une v.a.r.
- $(U(z))_{z \in \mathcal{D}}$ est un processus gaussien si pour tout $(z_1, ..., z_n)$, $(U(z_1), ..., U(z_n))^T \in \mathbb{R}^n$ est un vecteur aléatoire gaussien.

Soient $(\Omega, \mathcal{F}, \mathbb{P})$ un espace probabilisé et \mathcal{D} un ensemble.

- $(U(z))_{z \in \mathcal{D}}$ est un processus aléatoire si pour tout z, U(z) est une v.a.r.
- $(U(z))_{z\in\mathcal{D}}$ est un processus gaussien si pour tout $(z_1,...,z_n)$, $(U(z_1),...,U(z_n))^T\in\mathbb{R}^n$ est un vecteur aléatoire gaussien.
- La loi d'un processus gaussien est déterminée par

$$m(z) := \mathbb{E}[U(z)], \quad k(z, z') := \operatorname{Cov}(U(z), U(z')).$$

 $(U(z))_{z \in \mathcal{D}} \sim PG(m, k)$

La fonction k est définie positive : toutes les matrices $(k(z_i, z_j))_{1 \le i, j \le n}$ sont semi-définies positives. k est le noyau.

• Fonction inconnue $z \in \mathcal{D} \longmapsto u(z)$, obs. $\mathcal{B} = \{u(z_1), ..., u(z_n)\}$

- Fonction inconnue $z \in \mathcal{D} \longmapsto u(z)$, obs. $\mathcal{B} = \{u(z_1), ..., u(z_n)\}$
- On modélise $z \mapsto u(z)$ par une trajectoire d'un processus gaussien $(U(z))_{z \in \mathcal{D}} \sim PG(m, k)$ (loi *a priori*)

- Fonction inconnue $z \in \mathcal{D} \longmapsto u(z)$, obs. $\mathcal{B} = \{u(z_1), ..., u(z_n)\}$
- On modélise $z \mapsto u(z)$ par une trajectoire d'un processus gaussien $(U(z))_{z \in \mathcal{D}} \sim PG(m, k)$ (loi a priori)
- On conditionne la loi de U aux observations \mathcal{B} : $V(z) = [U(z)|U(z_1) = u(z_1),...,U(z_n) = u(z_n)].$ On obtient $V(z) \sim PG(\tilde{m},\tilde{k})$ (loi a posteriori)

- Fonction inconnue $z \in \mathcal{D} \longmapsto u(z)$, obs. $\mathcal{B} = \{u(z_1), ..., u(z_n)\}$
- On modélise $z \mapsto u(z)$ par une trajectoire d'un processus gaussien $(U(z))_{z \in \mathcal{D}} \sim PG(m, k)$ (loi a priori)
- On conditionne la loi de U aux observations \mathcal{B} : $V(z) = [U(z)|U(z_1) = u(z_1),...,U(z_n) = u(z_n)].$ On obtient $V(z) \sim PG(\tilde{m},\tilde{k})$ (loi a posteriori)
- Prédiction/estimation : $\forall z \in \mathcal{D}$, on prédit u(z) par $\tilde{m}(z)$: $\hat{u}(z) = \tilde{m}(z) \simeq u(z)$, incertitude associée $\tilde{k}(z,z) = \text{Var}(V(z))$.

Exemple de GPR en 1D

• Exemple 1D : fonction coûteuse à évaluer, on ne dispose que de 7 valeurs connues de cette fonction

Figure 2 – Fonction à approcher par GPR

Exemple de GPR en 1D

Figure 3 – Régression par processus gaussiens, 7 points d'observation

Plan de l'exposé

- Contexte ML et EDP, notions et outils principaux
 - Contexte ML et EDP
 - Régression à noyau, processus gaussiens
 - Notion de solution d'une EDP
- Contraintes physiques sur un processus gaussien
 - Contrainte d'EDP distributionnelle sur un processus aléatoire
 - Régularité Sobolev des processus gaussiens
- 3 Applications "numériques"
 - Covariances pour l'équation des ondes
 - GPR et schémas numériques
- Ouvertures et conclusion

Transport d'une discontinuité :

$$\begin{cases} \partial_t u + c \partial_x u = 0, \\ u_{|t=0} = u_0. \end{cases}$$
 (2)

Solution : $u(x,t) = u_0(x-ct)...$ Sens de (2) si u_0 discontinue ($u_0 \in L^2$)?

Transport d'une discontinuité :

$$\begin{cases} \partial_t u + c \partial_x u = 0, \\ u_{|t=0} = u_0. \end{cases}$$
 (2)

Solution : $u(x,t) = u_0(x-ct)...$ Sens de (2) si u_0 discontinue ($u_0 \in L^2$)?

$$\begin{split} \forall \varphi \in \mathit{C}^{\infty}_{c}(\mathbb{R} \times \mathbb{R}^{*}_{+}), \ 0 &= \int_{\mathbb{R} \times \mathbb{R}^{*}_{+}} \varphi(x,t) \Big(\partial_{t} \mathit{u}(x,t) + c \partial_{x} \mathit{u}(x,t) \Big) \mathit{d} x \mathit{d} t \\ &= - \int_{\mathbb{R} \times \mathbb{R}^{*}_{+}} \Big(\partial_{t} \varphi(x,t) + c \partial_{x} \varphi(x,t) \Big) \mathit{u}(x,t) \mathit{d} x \mathit{d} t. \end{split}$$

Transport d'une discontinuité :

$$\begin{cases} \partial_t u + c \partial_x u = 0, \\ u_{|t=0} = u_0. \end{cases}$$
 (3)

Solution : $u(x, t) = u_0(x - ct)...$ Sens de (3) si u_0 discontinue?

$$\forall \varphi \in C_c^{\infty}(\mathbb{R} \times \mathbb{R}_+^*), \ 0 = -\int_{\mathbb{R} \times \mathbb{R}_+^*} \Big(\partial_t \varphi(x,t) + c \partial_x \varphi(x,t) \Big) u(x,t) dx dt.$$

Transport d'une discontinuité :

$$\begin{cases} \partial_t u + c \partial_x u = 0, \\ u_{|t=0} = u_0. \end{cases}$$
 (3)

Solution : $u(x, t) = u_0(x - ct)$... Sens de (3) si u_0 discontinue?

$$\forall \varphi \in C_c^{\infty}(\mathbb{R} \times \mathbb{R}_+^*), \ 0 = -\int_{\mathbb{R} \times \mathbb{R}_+^*} \Big(\partial_t \varphi(x,t) + c \partial_x \varphi(x,t) \Big) u(x,t) dx dt.$$

- Notion de dualité.
- Solution faible (Sobolev, 1934), distributions (Schwartz, 1946).

Premières conclusions et questions abordées

Moralité:

- Solution d'une EDP : notion non triviale.
- Utilité/nécessité de l'analyse fonctionnelle.
- Si possible, ne pas supposer la solution continue.

^{2.} GINSBOURGER, D., ROUSTANT, O., & DURRANDE, N. (2016). On degeneracy and invariances of random fields paths with applications in Gaussian process modelling. *Journal of Statistical Planning and Inference*. 170:117-128.

Premières conclusions et questions abordées

Moralité:

- Solution d'une EDP : notion non triviale.
- Utilité/nécessité de l'analyse fonctionnelle.
- Si possible, ne pas supposer la solution continue.

Problème cible:

$$\partial_t u = L_\theta(u), \quad \mathcal{B} = \{u(z_1), ..., u(z_n)\}$$
 (4)

Imposer les contraintes physiques (EDP) sur le modèle statistique (GPR); identifier les conséquences sur le noyau.

^{2.} GINSBOURGER, D., ROUSTANT, O., & DURRANDE, N. (2016). On degeneracy and invariances of random fields paths with applications in Gaussian process modelling. *Journal of Statistical Planning and Inference*, 170:117-128.

Premières conclusions et questions abordées

Moralité:

- Solution d'une EDP : notion non triviale.
- Utilité/nécessité de l'analyse fonctionnelle.
- Si possible, ne pas supposer la solution continue.

Problème cible :

$$\partial_t u = L_{\theta}(u), \quad \mathcal{B} = \{u(z_1), ..., u(z_n)\}$$
 (4)

Imposer les contraintes physiques (EDP) sur le modèle statistique (GPR); identifier les conséquences sur le noyau.

Cas d'application :

- EDPs linéaires : Lu = 0 (invariance, voir [2])
- régularité Sobolev (énergie).
- 2. GINSBOURGER, D., ROUSTANT, O., & DURRANDE, N. (2016). On degeneracy and invariances of random fields paths with applications in Gaussian process modelling. *Journal of Statistical Planning and Inference*, 170:117-128.

Plan de l'exposé

- Contexte ML et EDP, notions et outils principaux
 - Contexte ML et EDP
 - Régression à noyau, processus gaussiens
 - Notion de solution d'une EDP
- 2 Contraintes physiques sur un processus gaussien
 - Contrainte d'EDP distributionnelle sur un processus aléatoire
 - Régularité Sobolev des processus gaussiens
- 3 Applications "numériques"
 - Covariances pour l'équation des ondes
 - GPR et schémas numériques
- Ouvertures et conclusion

Dérivées partielles en dimension d: notations

Soit $\alpha \in \mathbb{N}^d$ (d-uplet), $\alpha = (\alpha_1, ..., \alpha_d)$. On note

$$\partial^{\alpha} := (\partial_{x_1})^{\alpha_1} ... (\partial_{x_d})^{\alpha_d}. \tag{5}$$

Ordre de dérivation : $|\alpha| := \alpha_1 + ... + \alpha_d$.

Opérateur différentiel linéaire d'ordre n :

$$L = \sum_{|\alpha| \le n} \mathsf{a}_{\alpha} \partial^{\alpha}. \tag{6}$$

Soit un opérateur différentiel linéaire sur un ouvert $\mathcal{D} \subset \mathbb{R}^d$:

$$Lu = \sum_{|\alpha| \le n} a_{\alpha} \partial^{\alpha} u.$$

Soit un opérateur différentiel linéaire sur un ouvert $\mathcal{D} \subset \mathbb{R}^d$:

$$Lu = \sum_{|\alpha| \le n} a_{\alpha} \partial^{\alpha} u.$$

Solution forte : $u \in C^n(\mathcal{D})$ et $(Lu)(x) = 0 \ \forall x \in \mathcal{D}$.

Soit un opérateur différentiel linéaire sur un ouvert $\mathcal{D} \subset \mathbb{R}^d$:

$$Lu = \sum_{|\alpha| \le n} a_{\alpha} \partial^{\alpha} u.$$

Solution forte : $u \in C^n(\mathcal{D})$ et $(Lu)(x) = 0 \quad \forall x \in \mathcal{D}$.

Multiplication par une fonction test $\varphi \in \mathcal{C}^\infty_c(\mathcal{D})$ et intégration sur \mathcal{D}

$$\forall \varphi \in C_c^{\infty}(\mathcal{D}), \int_{\mathcal{D}} Lu(x)\varphi(x)dx = 0.$$
 (7)

Soit un opérateur différentiel linéaire sur un ouvert $\mathcal{D} \subset \mathbb{R}^d$:

$$Lu = \sum_{|\alpha| \le n} a_{\alpha} \partial^{\alpha} u.$$

Solution forte : $u \in C^n(\mathcal{D})$ et $(Lu)(x) = 0 \quad \forall x \in \mathcal{D}$.

Multiplication par une fonction test $arphi\in \mathcal{C}^\infty_c(\mathcal{D})$ et intégration sur \mathcal{D}

$$\forall \varphi \in C_c^{\infty}(\mathcal{D}), \int_{\mathcal{D}} Lu(x)\varphi(x)dx = 0.$$
 (7)

Adjoint formel : $L^*v = \sum_{|\alpha| \le n} (-1)^{|\alpha|} \partial^{\alpha}(a_{\alpha}v)$. Des IPP successives donnent les solutions distributionnelles :

$$\forall \varphi \in C_c^{\infty}(\mathcal{D}), \int_{\mathcal{D}} u(x) L^* \varphi(x) dx = 0.$$
 (8)

Soit un opérateur différentiel linéaire sur un ouvert $\mathcal{D} \subset \mathbb{R}^d$:

$$Lu = \sum_{|\alpha| \le n} a_{\alpha} \partial^{\alpha} u.$$

Solution forte : $u \in C^n(\mathcal{D})$ et $(Lu)(x) = 0 \ \forall x \in \mathcal{D}$.

Multiplication par une fonction test $\varphi \in C_c^\infty(\mathcal{D})$ et intégration sur \mathcal{D}

$$\forall \varphi \in C_c^{\infty}(\mathcal{D}), \int_{\mathcal{D}} Lu(x)\varphi(x)dx = 0.$$
 (7)

Adjoint formel : $L^*v = \sum_{|\alpha| \le n} (-1)^{|\alpha|} \partial^{\alpha}(a_{\alpha}v)$. Des IPP successives donnent les solutions distributionnelles :

$$\forall \varphi \in C_c^{\infty}(\mathcal{D}), \int_{\mathcal{D}} u(x) L^* \varphi(x) dx = 0.$$
 (8)

Ne nécessite que $u \in L^1_{loc}(\mathcal{D})$, i.e. $\int_K |u| < +\infty$ pour tout $K \subseteq \mathcal{D}$.

Processus aléatoire (gaussien) sous contrainte d'EDP [4]

Un P.A. est *mesurable* si l'application $(\omega, z) \mapsto U(z)(\omega)$ est mesurable.

^{3.} GINSBOURGER, D., ROUSTANT, O., & DURRANDE, N. (2016). On degeneracy and invariances of random fields paths with applications in Gaussian process modelling. *Journal of Statistical Planning and Inference*, 170:117-128.

^{4.} HENDERSON, I., NOBLE, P., & ROUSTANT, O. (2023). Characterization of the second order random fields subject to linear distributional PDE constraints. *Bernoulli*, 29(4), 3396-3422.

Processus aléatoire (gaussien) sous contrainte d'EDP [4]

Un P.A. est *mesurable* si l'application $(\omega, z) \mapsto U(z)(\omega)$ est mesurable.

Proposition 1

Soit $\mathcal{D} \subset \mathbb{R}^d$ un ouvert et $L := \sum_{|\alpha| \leq n} \mathsf{a}_\alpha \partial^\alpha$, $\mathsf{a}_\alpha \in \mathcal{C}^{|\alpha|}(\mathcal{D})$. Soit $U = \big(U(z)\big)_{z \in \mathcal{D}}$ un processus aléatoire mesurable centré d'ordre 2 de fonction de covariance k; supposons que $\sigma : z \longmapsto k(z,z)^{1/2} \in L^1_{loc}(\mathcal{D})$. Alors on a équivalence entre

- $\mathbb{P}(L(U) = 0 \text{ au sens des distributions}) = 1$
- $\forall z \in \mathcal{D}, L(k(z,\cdot)) = 0$ au sens des distributions.

^{3.} GINSBOURGER, D., ROUSTANT, O., & DURRANDE, N. (2016). On degeneracy and invariances of random fields paths with applications in Gaussian process modelling. *Journal of Statistical Planning and Inference*, 170:117-128.

^{4.} Henderson, I., Noble, P., & Roustant, O. (2023). Characterization of the second order random fields subject to linear distributional PDE constraints. Bernoulli, 29(4), 3396-3422.

Processus aléatoire (gaussien) sous contrainte d'EDP [4]

Un P.A. est *mesurable* si l'application $(\omega, z) \mapsto U(z)(\omega)$ est mesurable.

Proposition 1

Soit $\mathcal{D} \subset \mathbb{R}^d$ un ouvert et $L := \sum_{|\alpha| \leq n} \mathsf{a}_{\alpha} \partial^{\alpha}$, $\mathsf{a}_{\alpha} \in \mathcal{C}^{|\alpha|}(\mathcal{D})$. Soit $U = \big(U(z)\big)_{z \in \mathcal{D}}$ un processus aléatoire mesurable centré d'ordre 2 de fonction de covariance k; supposons que $\sigma : z \longmapsto k(z,z)^{1/2} \in L^1_{loc}(\mathcal{D})$. Alors on a équivalence entre

- $\mathbb{P}(L(U) = 0 \text{ au sens des distributions}) = 1$
- $\forall z \in \mathcal{D}, L(k(z,\cdot)) = 0$ au sens des distributions.

Généralise un résultat de [3] aux contraintes distributionnelles d'EDP. Cette propriété s'hérite au processus conditionné par GPR.

^{3.} GINSBOURGER, D., ROUSTANT, O., & DURRANDE, N. (2016). On degeneracy and invariances of random fields paths with applications in Gaussian process modelling. *Journal of Statistical Planning and Inference*, 170:117-128.

^{4.} Henderson, I., Noble, P., & Roustant, O. (2023). Characterization of the second order random fields subject to linear distributional PDE constraints. Bernoulli, 29(4), 3396-3422.

Exemples de noyaux vérifiant $L(k(z,\cdot)) = 0 \ \forall z$

Etant donné L, trouver k_L tel que $L(k_L(\cdot,z))=0 \ \forall z$; $\Delta=\sum_{i=1}^d \partial^2_{x_i x_i}$.

Exemples de noyaux vérifiant $L(k(z,\cdot)) = 0 \ \forall z$

Etant donné L, trouver k_L tel que $L(k_L(\cdot,z))=0 \ \forall z \ ; \ \Delta=\sum_{i=1}^d \partial^2_{x_ix_i}.$

- Laplace : $\Delta u = 0$ (Mendes et da Costa Júnior, 2012), (Ginsbourger et al., 2016)
- Chaleur : $\partial_t D\Delta u = 0$ (ALBERT et RATH, 2020)
- Div/Curl : $\nabla \cdot u = 0$, $\nabla \times u = 0$ (Scheuerer et Schlather, 2012),(Owhadi, 2023b)
- Mécanique des milieux continus : (JIDLING et al., 2018)
- Helmholtz : $-\Delta u = \lambda u$ (Albert et Rath, 2020)
- Maxwell (non)stationnaire: (WAHLSTROM et al., 2013), (JIDLING et al., 2017),(LANGE-HEGERMANN, 2018)
- Ondes 3D et transport : (HENDERSON et al., 2023)
- Voir aussi les "forces latentes" : (ÁLVAREZ et al., 2009),(LÓPEZ-LOPERA et al., 2021)

Exemples de noyaux vérifiant $L(k(z,\cdot)) = 0 \ \forall z$

Etant donné L, trouver k_L tel que $L(k_L(\cdot,z))=0 \ \forall z \ ; \ \Delta=\sum_{i=1}^d \partial^2_{x_ix_i}.$

- Laplace : $\Delta u = 0$ (Mendes et da Costa Júnior, 2012), (Ginsbourger et al., 2016)
- Chaleur : $\partial_t D\Delta u = 0$ (ALBERT et RATH, 2020)
- Div/Curl : $\nabla \cdot u = 0$, $\nabla \times u = 0$ (Scheuerer et Schlather, 2012),(Owhadi, 2023b)
- Mécanique des milieux continus : (JIDLING et al., 2018)
- Helmholtz : $-\Delta u = \lambda u$ (Albert et Rath, 2020)
- Maxwell (non)stationnaire: (WAHLSTROM et al., 2013), (JIDLING et al., 2017),(LANGE-HEGERMANN, 2018)
- Ondes 3D et transport : (HENDERSON et al., 2023)
- Voir aussi les "forces latentes" : (ÁLVAREZ et al., 2009),(LÓPEZ-LOPERA et al., 2021)

Souvent basé sur des représentations de solutions de Lu=0 de la forme

$$u = Gf$$
.

Plan de l'exposé

- Contexte ML et EDP, notions et outils principaux
 - Contexte ML et EDP
 - Régression à noyau, processus gaussiens
 - Notion de solution d'une EDP
- Contraintes physiques sur un processus gaussien
 - Contrainte d'EDP distributionnelle sur un processus aléatoire
 - Régularité Sobolev des processus gaussiens
- 3 Applications "numériques"
 - Covariances pour l'équation des ondes
 - GPR et schémas numériques
- Ouvertures et conclusion

• Fonctionnelles d'énergie ("interpretation physique") :

- Fonctionnelles d'énergie ("interpretation physique") :
 - Chaleur : $T(x,t), (x,t) \in \mathbb{R}^d \times \mathbb{R}_+, \ \partial_t T \Delta T = 0.$

$$\frac{1}{2}\partial_{t}\|T(\cdot,t)\|_{L^{2}}^{2} = -\|\nabla T(\cdot,t)\|_{L^{2}}^{2} < 0 \quad \text{(diffusion)}. \tag{9}$$

- Fonctionnelles d'énergie ("interpretation physique") :
 - Chaleur : $T(x,t), (x,t) \in \mathbb{R}^d \times \mathbb{R}_+, \ \partial_t T \Delta T = 0.$

$$\frac{1}{2}\partial_t \|T(\cdot,t)\|_{L^2}^2 = -\|\nabla T(\cdot,t)\|_{L^2}^2 < 0 \ \ \text{(diffusion)}. \tag{9}$$

• Ondes : $\partial_{tt}^2 u - \Delta u = 0$.

$$\partial_t \Big(\|\partial_t u(\cdot, t)\|_{L^2}^2 + \|\nabla u(\cdot, t)\|_{L^2}^2 \Big) = 0 \quad \text{(conservation)}. \tag{10}$$

Advection : si $\partial_t u + \partial_x u = 0$, alors $\partial_t ||u(\cdot,t)||_{L^p} = 0$.

- Fonctionnelles d'énergie ("interpretation physique") :
 - Chaleur : $T(x,t), (x,t) \in \mathbb{R}^d \times \mathbb{R}_+, \ \partial_t T \Delta T = 0.$

$$\frac{1}{2}\partial_{t}\|T(\cdot,t)\|_{L^{2}}^{2}=-\|\nabla T(\cdot,t)\|_{L^{2}}^{2}<0 \ \ \text{(diffusion)}. \tag{9}$$

• Ondes : $\partial_{tt}^2 u - \Delta u = 0$.

$$\partial_t \Big(\|\partial_t u(\cdot, t)\|_{L^2}^2 + \|\nabla u(\cdot, t)\|_{L^2}^2 \Big) = 0 \quad \text{(conservation)}. \tag{10}$$

Advection : si $\partial_t u + \partial_x u = 0$, alors $\partial_t ||u(\cdot,t)||_{L^p} = 0$.

 \rightarrow Norme L^2 des dérivées.

Dérivées à énergie finie et espaces de Sobolev

Quelques fonctions sont "presque" différentiables : $h(x) = \max(0, 1 - |x|)$.

Figure 4 – Gauche : h(x). Droite : h'(x) (...).

Malheureusement, $h' \notin C^0$... mais $h' \in L^2$ (énergie finie)!

Dérivées à énergie finie et espaces de Sobolev

Quelques fonctions sont "presque" différentiables : $h(x) = \max(0, 1 - |x|)$.

Figure 4 – Gauche : h(x). Droite : h'(x) (...).

Malheureusement, $h' \notin C^0$... mais $h' \in L^2$ (énergie finie)! Une fonction g est la dérivée faible de h si pour tout $\varphi \in C_c^{\infty}(\mathbb{R})$,

$$\int_{\mathbb{R}} h(x)\varphi'(x)dx = -\int_{\mathbb{R}} g(x)\varphi(x)dx.$$

Dérivées à énergie finie et espaces de Sobolev

Quelques fonctions sont "presque" différentiables : $h(x) = \max(0, 1 - |x|)$.

Figure 4 – Gauche : h(x). Droite : h'(x) (...).

Malheureusement, $h' \notin C^0$... mais $h' \in L^2$ (énergie finie)! Une fonction g est la dérivée faible de h si pour tout $\varphi \in C_c^{\infty}(\mathbb{R})$,

$$\int_{\mathbb{R}} h(x)\varphi'(x)dx = -\int_{\mathbb{R}} g(x)\varphi(x)dx.$$

On définit ensuite

$$H^1(\mathbb{R}) := \{ u \in L^2(\mathbb{R}) : u' \text{ existe au sens faible et } u' \in L^2(\mathbb{R}) \},$$

 $H^m(\mathcal{D}) := \{ u \in L^2(\mathcal{D}) : \forall |\alpha| \le m, \partial^{\alpha} u \text{ existe ASF et } \partial^{\alpha} u \in L^2(\mathcal{D}) \}.$

Noyau de covariance et régularité du processus

Figure 5 – Mouvement Brownien : $k(x, y) = \min(x, y)$.

Noyau de covariance et régularité du processus

Figure 6 – Gaussien : $k(x, y) = \sigma^2 \exp(-|x - y|^2/2\ell^2), \sigma = 1, \ell = 0.5.$

Critère intégral :

$$\mathbb{P}(U \in L^{2}(\mathcal{D})) = 1 \iff \int_{\mathcal{D}} k(x, x) dx < +\infty. \tag{11}$$

• Critère intégral :

$$\mathbb{P}(U \in L^{2}(\mathcal{D})) = 1 \iff \int_{\mathcal{D}} k(x, x) dx < +\infty.$$
 (11)

Vient de $\mathbb{E}[\int U(x)^2 dx] = \int \mathbb{E}[U(x)^2] dx = \int k(x,x) dx$.

^{5.} Bogachev, V. I. (1998). Gaussian measures. American Mathematical Soc.

• Critère intégral :

$$\mathbb{P}(U \in L^2(\mathcal{D})) = 1 \iff \int_{\mathcal{D}} k(x, x) dx < +\infty. \tag{11}$$

Vient de $\mathbb{E}[\int U(x)^2 dx] = \int \mathbb{E}[U(x)^2] dx = \int k(x,x) dx$.

• Critère spectral/Mercer : soit $\mathcal{E}_k : L^2(\mathcal{D}) \to L^2(\mathcal{D})$ l'opérateur

$$(\mathcal{E}_k f)(x) := \int k(x, y) f(y) dy. \tag{12}$$

^{5.} Bogachev, V. I. (1998). Gaussian measures. American Mathematical Soc.

Critère intégral :

$$\mathbb{P}(U \in L^2(\mathcal{D})) = 1 \iff \int_{\mathcal{D}} k(x, x) dx < +\infty. \tag{11}$$

Vient de $\mathbb{E}[\int U(x)^2 dx] = \int \mathbb{E}[U(x)^2] dx = \int k(x,x) dx$.

• Critère spectral/Mercer : soit $\mathcal{E}_k : L^2(\mathcal{D}) \to L^2(\mathcal{D})$ l'opérateur

$$(\mathcal{E}_k f)(x) := \int k(x, y) f(y) dy. \tag{12}$$

Si $\int k(x,x)dx < +\infty$, alors (...) il existe $(\psi_n) \subset L^2$ t.q.

$$k(x,y) = \sum_{n=0}^{+\infty} \psi_n(x)\psi_n(y) \quad \text{dans} \quad L^2(\mathcal{D} \times \mathcal{D}) \quad \text{("Mercer")}. \tag{13}$$

^{5.} Bogachev, V. I. (1998). Gaussian measures. American Mathematical Soc.

Donne (formellement)

$$\int k(x,x)dx = \int \sum_{n=0}^{+\infty} \psi_n(x)^2 dx = \sum_{n=0}^{+\infty} \int \psi_n(x)^2 dx$$

$$= \sum_{n=0}^{+\infty} \|\psi_n\|_2^2 = \sum_{n=0}^{+\infty} \lambda_n = \operatorname{Tr}(\mathcal{E}_k) < +\infty \quad \text{(trace finie)}. \quad (15)$$

^{6.} Driscoll, M. F. (1973). The reproducing kernel Hilbert space structure of the sample paths of a Gaussian process. *Z. Wahrscheinlichkeitstheorie und Verw. Gebiete*, *26*, 309-316.

7. Bogachev, V. I. (1998). *Gaussian measures*. American Mathematical Soc.

Donne (formellement)

$$\int k(x,x)dx = \int \sum_{n=0}^{+\infty} \psi_n(x)^2 dx = \sum_{n=0}^{+\infty} \int \psi_n(x)^2 dx$$

$$= \sum_{n=0}^{+\infty} \|\psi_n\|_2^2 = \sum_{n=0}^{+\infty} \lambda_n = \text{Tr}(\mathcal{E}_k) < +\infty \quad \text{(trace finie)}. (15)$$

• Injection du RKHS : Si $\int k(x,x)dx < +\infty$, alors on a $RKHS(k) \subset L^2(\mathcal{D})$, et en notant \mathcal{I} le plongement associé, $\mathcal{II}^*(=\mathcal{E}_k)$ est à trace fini ("Driscoll" [6]).

^{6.} DRISCOLL, M. F. (1973). The reproducing kernel Hilbert space structure of the sample paths of a Gaussian process. *Z. Wahrscheinlichkeitstheorie und Verw. Gebiete*, *26*, 309-316.

7. BOGACHEV, V. I. (1998). *Gaussian measures*. American Mathematical Soc.

Proposition 2 (H., 2022, "Sobolev regularity of GRFs")

Soit $(U(z))_{z\in\mathcal{D}}\sim PG(0,k)$ un PG mesurable, on a équivalence entre (i) $\mathbb{P}(U\in H^m(\mathcal{D}))=1$

Proposition 2 (H., 2022, "Sobolev regularity of GRFs")

Soit $(U(z))_{z\in\mathcal{D}} \sim PG(0,k)$ un PG mesurable, on a équivalence entre

- (i) $\mathbb{P}(U \in H^m(\mathcal{D})) = 1$
- (ii) Pour tout $|\alpha| \leq m$, $\partial^{\alpha,\alpha} k \in L^2(\mathcal{D} \times \mathcal{D})$ et l'opérateur intégral \mathcal{E}^{α}_k

$$\mathcal{E}_k^{\alpha}: L^2(\mathcal{D}) \to L^2(\mathcal{D}), \quad \mathcal{E}_k^{\alpha} f(x) = \int_{\mathcal{D}} \partial^{\alpha,\alpha} k(x,y) f(y) dy,$$

est à trace finie, avec $Tr(\mathcal{E}_{k}^{\alpha}) = \int_{\mathcal{D}} \partial^{\alpha,\alpha} k(x,x) dx < +\infty$.

Proposition 2 (H., 2022, "Sobolev regularity of GRFs")

Soit $(U(z))_{z\in\mathcal{D}} \sim PG(0,k)$ un PG mesurable, on a équivalence entre (i) $\mathbb{P}(U\in H^m(\mathcal{D}))=1$

(ii) Pour tout $|\alpha| \leq m$, $\partial^{\alpha,\alpha} k \in L^2(\mathcal{D} \times \mathcal{D})$ et l'opérateur intégral \mathcal{E}_k^{α}

$$\mathcal{E}_k^{\alpha}: L^2(\mathcal{D}) \to L^2(\mathcal{D}), \quad \mathcal{E}_k^{\alpha} f(x) = \int_{\mathcal{D}} \partial^{\alpha,\alpha} k(x,y) f(y) dy,$$

est à trace finie, avec $\text{Tr}(\mathcal{E}_k^{\alpha}) = \int_{\mathcal{D}} \partial^{\alpha,\alpha} k(x,x) dx < +\infty$. (iii) Il existe $(\phi_n) \subset L^2(\mathcal{D})$ telle que $k(x,y) = \sum_n \phi_n(x) \phi_n(y)$ dans $L^2(\mathcal{D} \times \mathcal{D})$. De plus, si $|\alpha| \leq m$, alors $\phi_n \in H^m(\mathcal{D})$ et

$$Tr(\mathcal{E}_k^{\alpha}) = \sum_{n=0}^{+\infty} \|\partial^{\alpha}\phi_n\|_2^2 < +\infty.$$

Proposition 2 (H., 2022, "Sobolev regularity of GRFs")

Soit $(U(z))_{z\in\mathcal{D}} \sim PG(0,k)$ un PG mesurable, on a équivalence entre (i) $\mathbb{P}(U \in H^m(\mathcal{D})) = 1$

(ii) Pour tout $|lpha| \leq m$, $\partial^{lpha,lpha} k \in L^2(\mathcal{D} imes \mathcal{D})$ et l'opérateur intégral \mathcal{E}^lpha_k

$$\mathcal{E}_k^{\alpha}: L^2(\mathcal{D}) \to L^2(\mathcal{D}), \quad \mathcal{E}_k^{\alpha} f(x) = \int_{\mathcal{D}} \partial^{\alpha,\alpha} k(x,y) f(y) dy,$$

est à trace finie, avec $\text{Tr}(\mathcal{E}_k^{\alpha}) = \int_{\mathcal{D}} \partial^{\alpha,\alpha} k(x,x) dx < +\infty$. (iii) Il existe $(\phi_n) \subset L^2(\mathcal{D})$ telle que $k(x,y) = \sum_n \phi_n(x) \phi_n(y)$ dans $L^2(\mathcal{D} \times \mathcal{D})$. De plus, si $|\alpha| \leq m$, alors $\phi_n \in H^m(\mathcal{D})$ et

$$Tr(\mathcal{E}_k^{\alpha}) = \sum_{n=0}^{+\infty} \|\partial^{\alpha}\phi_n\|_2^2 < +\infty.$$

(iv) On a RKHS(k) \subset H^m(\mathcal{D}); en notant \mathcal{I} le plongement associé, on a $Tr(\mathcal{II}^*) = \sum_{|\alpha| < m} Tr(\mathcal{E}_k^{\alpha}) < +\infty$.

Plan de l'exposé

- Contexte ML et EDP, notions et outils principaux
 - Contexte ML et EDP
 - Régression à noyau, processus gaussiens
 - Notion de solution d'une EDP
- 2 Contraintes physiques sur un processus gaussien
 - Contrainte d'EDP distributionnelle sur un processus aléatoire
 - Régularité Sobolev des processus gaussiens
- 3 Applications "numériques"
 - Covariances pour l'équation des ondes
 - GPR et schémas numériques
- Ouvertures et conclusion

GPR et équation des ondes ([8])

Ondes en 3D homogène : $\Delta := \partial_{xx}^2 + \partial_{yy}^2 + \partial_{zz}^2$

$$\begin{cases} Lu &= \frac{1}{c^2} \partial_{tt}^2 u - \Delta u = \Box u = 0, \quad (x, t) \in \mathbb{R}^3 \times \mathbb{R}^+ \\ u(x, 0) &= u_0(x), \quad \partial_t u(x, 0) = v_0(x). \end{cases}$$
(16)

^{8.} H., I., NOBLE, P., & ROUSTANT, O. (to appear). Covariance models and Gaussian process regression for the wave equation. Application to related inverse problems. *J. Comput. Phys.*

GPR et équation des ondes ([8])

Ondes en 3D homogène : $\Delta := \partial_{xx}^2 + \partial_{yy}^2 + \partial_{zz}^2$

$$\begin{cases} Lu &= \frac{1}{c^2} \partial_{tt}^2 u - \Delta u = \Box u = 0, \quad (x, t) \in \mathbb{R}^3 \times \mathbb{R}^+ \\ u(x, 0) &= u_0(x), \quad \partial_t u(x, 0) = v_0(x). \end{cases}$$
(16)

Représentation de u (Krichhoff) : $F_t = \sigma_{ct}/4\pi c^2 t$ et $\dot{F}_t = \partial_t F_t$

$$u(x,t) = (F_t * v_0)(x) + (\dot{F}_t * u_0)(x). \tag{17}$$

^{8.} H., I., NOBLE, P., & ROUSTANT, O. (to appear). Covariance models and Gaussian process regression for the wave equation. Application to related inverse problems. *J. Comput. Phys.*

GPR et équation des ondes ([8])

Ondes en 3D homogène : $\Delta := \partial_{xx}^2 + \partial_{yy}^2 + \partial_{zz}^2$

$$\begin{cases} Lu &= \frac{1}{c^2} \partial_{tt}^2 u - \Delta u = \Box u = 0, \quad (x, t) \in \mathbb{R}^3 \times \mathbb{R}^+ \\ u(x, 0) &= u_0(x), \quad \partial_t u(x, 0) = v_0(x). \end{cases}$$
(16)

Représentation de u (Krichhoff) : $F_t = \sigma_{ct}/4\pi c^2 t$ et $\dot{F}_t = \partial_t F_t$

$$u(x,t) = (F_t * v_0)(x) + (\dot{F}_t * u_0)(x). \tag{17}$$

On suppose u_0 et v_0 inconnues $\to u_0 \sim PG(0, k_u)$ et $v_0 \sim PG(0, k_v)$, indépendants. u donné par (17) est alors un PG centré de noyau

$$k((x,t),(x',t')) = [(F_t \otimes F_{t'}) * k_v](x,x') + [(\dot{F}_t \otimes \dot{F}_{t'}) * k_u](x,x'). \quad (18)$$

Le noyau k vérifie $\square k((x,t),\cdot) = 0$ pour tout $(x,t) \in \mathbb{R}^3 \times \mathbb{R}_+$.

^{8.} H., I., NOBLE, P., & ROUSTANT, O. (to appear). Covariance models and Gaussian process regression for the wave equation. Application to related inverse problems. *J. Comput. Phys.*

Estimation de paramètres physiques et de conditions initiales

• Reconstruction de conditions initiales : la moyenne de GPR vérifie $\Box \tilde{m} = 0$. Donc

$$\tilde{m}(\cdot, t=0) \simeq u_0, \quad \partial_t \tilde{m}(\cdot, t=0) \simeq v_0$$

Estimation de paramètres physiques et de conditions initiales

• Reconstruction de conditions initiales : la moyenne de GPR vérifie $\Box \tilde{m} = 0$. Donc

$$\tilde{m}(\cdot, t=0) \simeq u_0, \quad \partial_t \tilde{m}(\cdot, t=0) \simeq v_0$$

• Le noyau k est paramétré par c, θ_u et θ_v ; θ_u et θ_v peuvent contenir des informations physiques sur u_0 et v_0 .

Exemple : condition initiale à support compact donnent le modèle

$$k_{u}(x,x') = k_{u}^{0}(x,x') \mathbb{1}_{B(x_{0},R)}(x) \mathbb{1}_{B(x_{0},R)}(x'), \tag{19}$$

donne $(x_0, R) \in \theta_u$. De même pour v_0 (on peut aussi encoder des symétries).

→ estimation possible avec la vraisemblance marginale.

Application numérique

Cadre restrictif

Convolutions coûteuses (4D) \rightarrow on se place dans le cadre de la symétrie radiale (convolutions explicites).

ullet Résolution numérique de l'équation des ondes dans $[0,1]^3$, $v_0=0$ et

Figure 7 – Positions des capteurs

Visualisation des données

Figure 8 – Exemples de signaux capturés. Rouge : signal non bruité. Bleu : signal bruité.

Reconstruction de condition initiale et paramètres de position

Figure 9 – Vraie u_0 (colonne de gauche) vs GPR u_0 (colonne de droite). 15 senseurs sont utilisés. Les images correspondent à des coupes 3D pour z = 0.5.

Localisation de source ponctuelle : $R \ll 1$

Cas où $u_0 \equiv 0$ et la source v_0 est quasi ponctuelle en x_0^* : on utilise les noyaux

$$k_{\nu}^{R}(x,x') = k_{\nu}(x,x') \frac{\mathbb{1}_{B(x_{0},R)}(x)}{4\pi R^{3}/3} \frac{\mathbb{1}_{B(x_{0},R)}(x')}{4\pi R^{3}/3},$$
 (20)

$$k((x,t),(x',t')) = [(F_t \otimes F_{t'}) * k_v^R](x,x'), \tag{21}$$

avec $R \ll 1$. Hyperparamètres de $k: (\theta_v, x_0, R, c)$ On fixe θ_v, R et c aux "bonnes valeurs" : vraisemblance marginale $\mathcal{L}(\theta) = \mathcal{L}(x_0), \ x_0 \in \mathbb{R}^3$.

Question : comportement de $x_0 \mapsto \mathcal{L}(x_0)$?

Minimiser la vraisemblance marginale négative ≡ localisation GPS [9]

Figure : $x_0 \mapsto \mathcal{L}(x_0)$.

Valeurs affichées : uniquement celles $\leq 2.035 \times 10^9$.

: localisation des capteurs.

× : localisation de la source.

Etude + preuve : article.

9. H., I., NOBLE, P., & ROUSTANT, O. (to appear). Covariance models and Gaussian process regression for the wave equation. Application to related inverse problems. *J. Comput. Phys.*

Plan de l'exposé

- Contexte ML et EDP, notions et outils principaux
 - Contexte ML et EDP
 - Régression à noyau, processus gaussiens
 - Notion de solution d'une EDP
- 2 Contraintes physiques sur un processus gaussien
 - Contrainte d'EDP distributionnelle sur un processus aléatoire
 - Régularité Sobolev des processus gaussiens
- 3 Applications "numériques"
 - Covariances pour l'équation des ondes
 - GPR et schémas numériques
- Ouvertures et conclusion

Méthode des différences finies

Problématique : résolution numérique d'une EDP. Advection linéaire :

$$\partial_t u + c \partial_x u = 0.$$

Grille $G = \{(i\Delta x, n\Delta t), i \in \mathbb{Z}, n \in \mathbb{N}\}$. Pour construire $u_i^n \simeq u(i\Delta x, n\Delta t)$, on peut résoudre

$$\frac{u_i^{n+1} - u_i^n}{\Delta t} + c \frac{u_{i+1}^n - u_i^n}{\Delta x} = 0,$$

soit, avec $\lambda = c\Delta x/\Delta t$,

$$u_i^{n+1} = (1+\lambda)u_i^n - \lambda u_{i+1}^n.$$

GPR sur une grille

- Fonction u(x, t) à estimer sur une grille.
- A partir de $(u_{i-1}^n, u_i^n, u_{j+1}^n)$, estimations des valeurs de u en les points

$$\frac{((i-1)\Delta x, n\Delta t), (i\Delta x, n\Delta t), ((i+1)\Delta x, n\Delta t),}{\text{estimer } u(i\Delta x, (n+1)\Delta t).}$$

GPR sur une grille

- Fonction u(x, t) à estimer sur une grille.
- A partir de $(u_{i-1}^n, u_i^n, u_{j+1}^n)$, estimations des valeurs de u en les points

$$((i-1)\Delta x, n\Delta t), (i\Delta x, n\Delta t), ((i+1)\Delta x, n\Delta t), \underbrace{\bullet}_{i-1,n} \underbrace{\bullet}_{i+1,n} \underbrace{\bullet}_{i+1,n}$$
estimer $u(i\Delta x, (n+1)\Delta t)$.

La GPR est linéaire en les données :

$$u_i^{n+1} = \tilde{m}(i\Delta x, (n+1)\Delta t) = a_{-1}u_{i-1}^n + a_0u_i^n + a_1u_{i+1}^n, \qquad (22)$$

où $(a_{-1}, a_0, a_1)^T$ donné par les formules de GPR.

i.n+1

GPR sur une grille

- Fonction u(x, t) à estimer sur une grille.
- A partir de $(u_{i-1}^n, u_i^n, u_{j+1}^n)$, estimations des valeurs de u en les points

$$((i-1)\Delta x, n\Delta t), (i\Delta x, n\Delta t), ((i+1)\Delta x, n\Delta t),$$
estimer $u(i\Delta x, (n+1)\Delta t).$

La GPR est linéaire en les données :

$$u_i^{n+1} = \tilde{m}(i\Delta x, (n+1)\Delta t) = a_{-1}u_{i-1}^n + a_0u_i^n + a_1u_{i+1}^n, \qquad (22)$$

où $(a_{-1}, a_0, a_1)^T$ donné par les formules de GPR.

L'équation (22) est-elle un "schéma numérique" ? Pour quelle EDP ? Quel noyau utiliser ? Propriétés ?

i.n+1

GPR et DF : un premier résultat

Proposition 3

Si $k((x,t),(x',t'))=k_0(x-ct,x'-ct')$, $k_0(h)=k_{\nu}(h/\ell)$, Matérn d'ordre $\nu>0$, alors quand $\ell\to+\infty$, on obtient

- Si $\nu = 1/2$, upwind: $a_{-1} = (\lambda + |\lambda|)/2$, $a_0 = 1 |\lambda|$, $a_1 = (-\lambda + |\lambda|)/2$.
- Si $\nu \ge 2$, Lax-Wendroff: $a_{-1} = (\lambda + \lambda^2)/2$, $a_0 = 1 \lambda^2$, $a_1 = (-\lambda + \lambda^2)/2$.
- Si $1 < \nu < 2$, splines fractionnaires :

$$a_{-1} = \frac{\lambda + D(\nu, \lambda)}{2}, \quad a_0 = 1 - D(\nu, \lambda), \quad a_1 = \frac{-\lambda + D(\nu, \lambda)}{2},$$

avec

$$D(\nu, \lambda) := \frac{|\lambda + 1|^{2\nu} + |\lambda - 1|^{2\nu} - 2|\lambda|^{2\nu} - 2}{4^{\nu} - 4}.$$

Propriétés qualitatives

Etude de convergence

$$E_{\nu,2}(\Delta x) := \left(\Delta x \sum_{j=1}^{N} |(u_{\text{num},\nu})_j - (u_T)_j|^2\right)^{1/2} = ||u_{\text{num},\nu} - u_T||_2.$$

Figure 10 – Erreur ℓ^2 , $\Delta x \mapsto E_{\nu,2}(\Delta x)$

Rétrospective

GPR, GPs sous contraintes physiques

- Contrainte d'EDP linéaire [10]
- Contrainte d'énergie : H^m , $W^{m,p}$ [11]
- \rightarrow Des CNS sous des hypothèses minimales.

Applications "numériques" :

- Application à l'équation des ondes [12]
- Résultats préliminaires sur liens entre DF et GPR.

^{10.} Henderson, I., Noble, P., & Roustant, O. (2023). Characterization of the second order random fields subject to linear distributional PDE constraints. *Bernoulli*, *29*(4), 3396-3422.

11. H., I. (2022). *Sobolev regularity of Gaussian random fields* [working paper or preprint].

12. H., I., Noble, P., & Roustant, O. (to appear). Covariance models and Gaussian process regression for the wave equation. Application to related inverse problems. *J. Comput. Phys.*

Perspectives

- ullet Formulations variationnelles o Sobolev fractionnaires.
- Analyse d'erreur en norme Sobolev pour la GPR [13] [14].
- Ondes 3D : problématiques computationnelles.
- Sortir du cas gaussien? Processus α -stables [15].

Mathématiques variées : EDP, probabilités, statistiques, analyse fonctionnelle, analyse numérique...

15. Sullivan, T. J. (2017). Well-posed Bayesian inverse problems and heavy-tailed stable quasi-Banach space priors. *Inverse Probl. Imaging*, 11(5), 857-874.

CHEN, Y., HOSSEINI, B., OWHADI, H., & STUART, A. M. (2021). Solving and learning nonlinear PDEs with Gaussian processes. *Journal of Computational Physics*, 447, 110668.
 BATLLE, P., CHEN, Y., HOSSEINI, B., OWHADI, H., & STUART, A. M. (2023). Error Analysis of Kernel/GP Methods for Nonlinear and Parametric PDEs.

Merci de votre attention!

Formules à symétrie radiale

$$\begin{split} [(F_t \otimes F_{t'}) * k_v](x, x') \\ &= \frac{\operatorname{sgn}(tt')}{16c^2 rr'} \sum_{\varepsilon, \varepsilon' \in \{-1, 1\}} \varepsilon \varepsilon' K_v \big((r + \varepsilon ct)^2, (r' + \varepsilon' c|t'|)^2 \big) \\ [(\dot{F}_t \otimes \dot{F}_{t'}) * k_u](x, x') \\ &= \frac{1}{4rr'} \sum_{\varepsilon, \varepsilon' \in \{-1, 1\}} (r + \varepsilon ct) (r' + \varepsilon' c|t'|) k_u \big((r + \varepsilon ct)^2, (r' + \varepsilon' c|t'|)^2 \big) \end{split}$$

Un équivalent déterministe : la version RKHS

Soit $k: D \times D \to \mathbb{R}$ une fonction définie positive. On définit H_k comme

$$H_k := \left\{ \sum_{i=1}^{+\infty} a_i k(z_i, \cdot) \text{ où } (a_i) \subset \mathbb{R}, (z_i) \subset D \text{ et } \sum_{i,j=1}^{+\infty} a_i a_j k(z_i, z_j) < +\infty \right\}$$

muni du produit scalaire

$$\left\langle \sum_{i=1}^{+\infty} a_i k(x_i, \cdot), \sum_{j=1}^{+\infty} b_j k(y_j, \cdot) \right\rangle := \sum_{i,j=1}^{+\infty} a_i b_j k(x_i, y_j)$$

La fonction k vérifie les propriétés de reproduction suivantes

$$\langle k(z,\cdot), k(z',\cdot) \rangle = k(z,z')$$
 et $\langle k(z,\cdot), f \rangle = f(z) \ \forall f \in H_k$

Un équivalent déterministe : la version RKHS

Un RKHS est exactement un espace de Hilbert de fonctions $D \to \mathbb{R}$ tel que pour tout $z \in D$, la forme linéaire $f \mapsto f(z)$ est continue (ex : $H^{s+d/2}, s > 0$).

Soit maintenant le problème d'interpolation régularisé

$$\inf_{v \in \mathcal{H}_k} ||v||_{\mathcal{H}_k} \quad \text{s.t.} \quad v(z_i) = u(z_i) \quad \forall i \in \{1, ..., n\}$$

Alors $v = \tilde{m}$. De plus, $\tilde{m} = p_F(u)$ où $F := \operatorname{Span}(k(z_1, \cdot), ..., k(z_n, \cdot))$. De même, $\tilde{k}(z, \cdot) = P_{F^{\perp}}(k(z, \cdot))$. On a alors l'estimation

$$|u(z) - \tilde{m}(z)| \leq \tilde{k}(z,z)^{1/2} ||u||_{H_k}$$

Différence avec la GPR : la GPR donne accès à une mesure de probabilité $\to \mathbb{P}(\sup_z |V_z| \le \varepsilon), \ \mathbb{P}(||V||_E \ge M)... +$ la vraisemblance marginale.

N.B.: terrain d'échange entre deux communautés.

Espace de Hilbert à noyau reproduisant (RKHS)

Matrice $M \in \mathbb{R}^{d \times d}$ semi-définie positive

$$\longleftrightarrow$$
 produit scalaire sur \mathbb{R}^d , $\langle u, v \rangle_M = \langle u, Mv \rangle$

Fonction définie positive $k: \mathcal{D} \times \mathcal{D} \to \mathbb{R}$

$$\longleftrightarrow H_k$$
, espace de Hilbert de fonctions $\mathcal{D} \to \mathbb{R}$

- $H_k = \overline{\text{Vect}(k(z,\cdot), z \in \mathcal{D})}$, $\|\sum_{i=1}^n a_i k(z_i,\cdot)\|_k^2 = \sum_{i,j=1}^n a_i a_j k(z_i,z_j)$.
- H_k vérifie $\langle k(z,\cdot), f \rangle_k = f(z), \langle k(z,\cdot), k(z',\cdot) \rangle_k = k(z,z').$
- RPG \equiv projection orthogonale de u dans H_k , le RKHS de k:

$$\tilde{m} = p_F(u), \quad F = \text{Vect}(k(z_1, \cdot), ..., k(z_n, \cdot)).$$

Espace de Hilbert à noyau reproduisant (RKHS)

Matrice $M \in \mathbb{R}^{d \times d}$ semi-définie positive

$$\longleftrightarrow$$
 produit scalaire sur \mathbb{R}^d , $\langle u, v \rangle_M = \langle u, Mv \rangle$

Fonction définie positive $k: \mathcal{D} \times \mathcal{D} \to \mathbb{R}$

$$\longleftrightarrow H_k$$
, espace de Hilbert de fonctions $\mathcal{D} \to \mathbb{R}$

- $H_k = \overline{\text{Vect}(k(z,\cdot), z \in \mathcal{D})}$, $\|\sum_{i=1}^n a_i k(z_i,\cdot)\|_k^2 = \sum_{i,j=1}^n a_i a_j k(z_i,z_j)$.
- H_k vérifie $\langle k(z,\cdot), f \rangle_k = f(z), \langle k(z,\cdot), k(z',\cdot) \rangle_k = k(z,z').$
- RPG \equiv projection orthogonale de u dans H_k , le RKHS de k:

$$\tilde{m} = p_F(u), \quad F = \text{Vect}(k(z_1, \cdot), ..., k(z_n, \cdot)).$$

• $H^{s+d/2}(\mathcal{D}), \ \mathcal{D} \subset \mathbb{R}^d$ est un RKHS.

Un mot sur la GPR et les réseaux de neurones

- Certains processus gaussiens comme limite de réseaux de neurones à une couche avec une infinité de neurones ([16], Section 4.2.3).
- La régression par réseaux de neurones comme une GPR avec un noyau appris des données ([17]; Mallat, collège de France).
- GPR: "seul" concurrent actuel aux réseaux de neurones (informés par la physique, PINNs), cf [18] pour une discussion.

^{16.} RASMUSSEN, C. E., & WILLIAMS, C. (2006). Gaussian Processes for Machine Learning. The MIT Press.

^{17.} OWHADI, H. (2023a). Do ideas have shape? Idea registration as the continuous limit of artificial neural networks. *Physica D: Nonlinear Phenomena, 444,* 133592.

18. CHEN Y. HOSSEINI B. OWHADI H. & STUART A. M. (2021). Solving and learning

^{18.} CHEN, Y., HOSSEINI, B., OWHADI, H., & STUART, A. M. (2021). Solving and learning nonlinear PDEs with Gaussian processes. *Journal of Computational Physics*, 447, 110668.

Fonction de vraisemblance marginale

Souvent, noyau paramétré : $k=k_{\theta}, \theta \in \Theta \subset \mathbb{R}^{p}$.

$$k_{(\sigma^2,\ell)}(x,y) = \sigma^2 \exp(-|x-y|^2/2\ell^2)$$

 $\theta = (\sigma^2, \ell) \in \mathbb{R}_+^* \times \mathbb{R}_+^*$. σ^2 : variance; ℓ : longueur caractéristique.

• On peut considérer la (densité de) probabilité d'obtenir les données observées $u_{obs} = (u(z_1), ..., u(z_n)) \in \mathbb{R}^n$ sachant une valeur de θ : en notant $K_{\theta ii} = k_{\theta}(z_i, z_i)$ alors

$$p(u_{obs}|\theta) = \frac{1}{(2\pi)^{n/2} \det K_{\theta}^{1/2}} e^{-\frac{1}{2}u_{obs}^{\mathsf{T}} K_{\theta}^{-1} u_{obs}}$$

• On pose $\mathcal{L}(\theta) := -\log p(u_{obs}|\theta)$ et on cherche à résoudre

$$\theta^* = \operatorname*{arg\,min}_{\theta \in \Theta} \mathcal{L}(\theta)$$

Extension aux EDPs non linéaires

- Contraintes non linéaires sur $k(z,\cdot)$: pas réaliste (+ interprétation PG non valide).
- Alternative : dans [19], la contrainte d'EDP non linéaire est uniquement appliquée ponctuellement sur \tilde{m} : modification du problème d'optimisation dans le RKHS en

$$\inf_{v \in \mathcal{H}_k} ||v||_{\mathcal{H}_k} \quad \text{ s.t. } \quad \mathcal{N}(v(z_i), \nabla v(z_i), ...) = \ell_i \quad \forall i \in \{1, ..., n\}$$

Généralise une approche décrite dans [20].

 Couplage de cette approche avec des contraintes linéaires strictes: [21] (div/curl/périodicité).

^{19.} CHEN, Y., HOSSEINI, B., OWHADI, H., & STUART, A. M. (2021). Solving and learning nonlinear PDEs with Gaussian processes. Journal of Computational Physics, 447, 110668.

^{20.} Wendland, H. (2004). Scattered data approximation. Cambridge university press.

^{21.} OWHADI, H. (2023b). Gaussian Process Hydrodynamics.

Régularité $W^{m,p}$ d'un PG, $m \in \mathbb{N}, p \in (1, +\infty)$

Proposition 4 (H., 2022)

Soit $(U(z))_{z\in\mathcal{D}}\sim GP(0,k)$ un PG mesurable, il y a équivalence entre (i) $\mathbb{P}(U\in W^{m,p}(\mathcal{D}))=1$ (ii) Pour tout $|\alpha|\leq m$, $\partial^{\alpha,\alpha}k\in L^p(\mathcal{D}\times\mathcal{D})$ et l'opérateur $\mathcal{E}^\alpha_{\iota}$

$$\mathcal{E}_k^{\alpha}: L^{\mathbf{q}}(\mathcal{D}) \to L^{\mathbf{p}}(\mathcal{D}), \quad \mathcal{E}_k^{\alpha} f(x) = \int_{\mathcal{D}} \partial^{\alpha,\alpha} k(x,y) f(y) dy$$

est symétrique, positif et nucléaire : il existe $(\phi_n^{\alpha}) \subset L^p(\mathcal{D})$ telle que $\partial^{\alpha,\alpha} k(x,y) = \sum_n \psi_n^{\alpha}(x) \psi_n^{\alpha}(y)$ dans $L^p(\mathcal{D} \times \mathcal{D})$ avec

$$\sum_{n=0}^{+\infty}\|\psi_n^\alpha\|_p^2<+\infty\quad (+\textit{raffinement si }1\leq p\leq 2)$$

(iii) Pour tout $|\alpha| \leq m$, $\partial^{\alpha,\alpha} k \in L^p(\mathcal{D} \times \mathcal{D})$, $\int_{\mathcal{D}} [\partial^{\alpha,\alpha} k(x,x)]^{p/2} dx < +\infty$.

Pourquoi les méthodes de régression à noyau?

Parmi les méthodes de ML, focalisation sur les méthodes à noyau :

- interprétation bayésienne \rightarrow processus gaussiens [22].
- interprétation RKHS \rightarrow analyse fonctionnelle [23].
- "standard" si relativement peu de données [24].
- une façon d'étudier les réseaux de neurones [25].

^{22.} RASMUSSEN, C. E., & WILLIAMS, C. (2006). Gaussian Processes for Machine Learning. The MIT Press.

^{23.} Wendland, H. (2004). Scattered data approximation. Cambridge university press.

^{24.} Gramacy, R. B. (2020). Surrogates: Gaussian process modeling, design, and optimization for the applied sciences. CRC press.

^{25.} Belkin, M., Ma, S., & Mandal, S. (2018). To Understand Deep Learning We Need to Understand Kernel Learning. 35^{th} ICML, 541-549.

Formules de GPR

On note $u_{obs} = (u(z_1), ..., u(z_n))$ les données, $K_{ij} := k(z_i, z_j)$ et $k(Z, z)_i := k(z_i, z)$. Alors la moyenne et la covariance a posteriori sont données par

$$\begin{cases} \tilde{m}(z) &= k(Z, z)^T K^{-1} u_{obs} \in \text{Span}(k(z_1, \cdot), ..., k(z_n, \cdot)), \\ \tilde{k}(z, z') &= k(z, z') - k(Z, z)^T K^{-1} k(Z, z'). \end{cases}$$

• On remplace parfois K par $K + \lambda I, \lambda > 0$: régression ridge.

Formules de GPR

On note $u_{obs} = (u(z_1), ..., u(z_n))$ les données, $K_{ij} := k(z_i, z_j)$ et $k(Z, z)_i := k(z_i, z)$. Alors la moyenne et la covariance a posteriori sont données par

$$\begin{cases} \tilde{m}(z) &= k(Z, z)^T K^{-1} u_{obs} \in \mathsf{Span}(k(z_1, \cdot), ..., k(z_n, \cdot)), \\ \tilde{k}(z, z') &= k(z, z') - k(Z, z)^T K^{-1} k(Z, z'). \end{cases}$$

- On remplace parfois K par $K + \lambda I$, $\lambda > 0$: régression ridge.
- Supposons que Lu=0, L linéaire. k est adapté à cette contrainte si $L\tilde{m}=0$, i.e. $Lk(z,\cdot)=0$ pour tout z.
- $K \sim$ matrice de Gram, $k(Z, z) \sim$ vecteur de produits scalaires.

L'estimation bayésienne en une slide

- Quantité inconnue $u \in E$ $(E \subset \mathbb{R}^p$ par exemple) + base de données B
- On *modélise u* comme aléatoire : $u \sim \pi$, π mesure de proba sur E, c'est le prior. B est aussi vue aléatoire.
- On conditionne le prior sur $B: \pi_B = \pi(\cdot | B)$ est le posterior
- π_B permet d'estimer u par $\hat{u} = \mathbb{E}[u|B]$. En général : contraction du posterior vers une masse de Dirac si B est suffisamment riche.

Les processus gaussiens permettent ce type d'approche lorsque u est une fonction. E est alors un espace de fonctions et les PG permettent de définir un prior sur E.